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Abstract

Datacenters are critical assets for today’s Internet giants (Google, Facebook, Microsoft, Amazon, etc.). They

host extraordinary amounts of data, serve requests for millions of users, generate untold profits for their

operators, and have enabled new modes of communication, socialization, and organization for society at-

large. Their steady growth in scale and capability has allowed datacenter operators to continually expand

the reach and benefit of their services. The motivation for the work presented in this dissertation stems

from a simple premise: future scaling of datacenter capability depends upon improvements to server power-

efficiency. That is, without improvements to power-efficiency, datacenter operators will soon face a limit to

the utility and capability of existing facilities that might result in (1) a sudden boom in datacenter construction,

(2) a rapid increase in the cost to operate existing datacenters, or (3) stagnation in the growth of datacenter

capability. This limit is akin to the “Power Wall” that the CPU industry has been grappling with for nearly a

decade now.

Like the CPU “Power Wall,” the problem is not that we can’t build datacenters with more capability in

the future per se. Rather, it will become increasingly difficult to do this economically; even now, the cost

to provision power and cooling infrastructure is a substantial fraction of datacenter “Total Cost of Owner-

ship.” The root cause of this problem is the recent failure of Dennard scaling for semiconductor technologies

smaller than 90 nanometers. Even though Moore’s Law continues to march on at a steady pace, granting us

exponential growth in transistor count in new processors, we can no longer make full use of that transistor

count without also increasing the power density of those new processors. Thus, in order for datacenter op-

erators to sustain the rate of growth in capability that they have come to expect, they must either provision

new power and cooling infrastructure to support future servers (at exceptional cost), or find other ways to im-

prove the power-efficiency of datacenters that do not depend on semiconductor technology scaling. Indeed,

the initial onset of this problem led to rapid improvements to the efficiency of power delivery and cooling

within datacenters, reducing non-server power consumption by an order of magnitude. Unfortunately, those

improvements were essentially one-time benefits and have now been exhausted.

In this dissertation, we show that most of the future opportunity to improve datacenter power-efficiency

lies in improving the power-efficiency of the servers themselves, as most of the inefficiency in the rest of a

datacenter has largely been eliminated. Then, we explore four compelling opportunities to improve server

power-efficiency: two hardware proposals that explicitly reduce the power consumption of servers, and two
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software proposals that improve the power-efficiency of servers operating as a cluster.

First, we present Multicore DIMM (MCDIMM), a modification to the architecture of traditional DDRx

main memory modules optimized for energy-efficiency. MCDIMM modules divide the wide, 64-bit rank

interface presented by ordinary DIMMs into smaller rank subsets. By accessing rank subsets individually,

fewer DRAM chips are activated per column access (i.e. cache-line refill), which greatly reduces dynamic

energy consumption. Additionally, we describe an energy-efficient implementation of error-correction codes

for MCDIMMs, as well as “chipkill” reliability, which tolerates the failure of entire DRAM devices. For

ordinary server configurations and across a wide range of benchmarks, we estimate more than 20% average

savings in memory dynamic power consumption, though the impact on total system power consumption is

more modest. We also describe additional, unexpected performance and static-power consumption benefits

from rank subsetting.

Second, we propose an architecture for per-core power gating (PCPG) of multicore processors, where

the power supply for individual CPU cores can be cut entirely. We propose that servers running at low to

moderate utilization, as is common in datacenters, could operate with some of their cores gated off. Gating

the power to a core eliminates its static power consumption, but requires flushing its caches and precludes

using the core to execute workloads until power is restored. In our proposal, we improve the utility of PCPG

by coordinating power gating actions with the operating system, migrating workloads off of gated cores onto

active cores. This is in contrast to contemporary industry implementations of PCPG that gate cores reactively.

We control the gating of cores with a dynamic power manager which continually monitors CPU utilization.

Our OS-integrated approach to PCPG maximizes the opportunities available to utilize PCPG relative to OS-

agnostic approaches, and protects applications from incurring the latency of waking a sleeping core. We show

that PCPG is beneficial for datacenter workloads, and that it can reduce CPU power consumption by up to

40% for underutilized systems with minimal impact on performance.

The preceding hardware proposals seek to improve the power-efficiency of individual servers directly. The

improvements are modest, however, as there are many factors that contribute to the inefficiency of servers

(i.e. cooling fans, spinning disks, power regulator inefficiency, etc.). More to the point, techniques like

PCPG only address the power-inefficiency of underutilized CPUs, and do little to address the inefficiency of

the rest of the components within a server when it is at low utilization. To address this short-coming, this

dissertation then explores a different tack and holistically assesses how utilization across clusters of servers

can be manipulated to improve power-efficiency.

First, we describe how contemporary distributed storage systems, such as Hadoop’s Distributed File Sys-

tem (HDFS), expect the perpetual availability of the vast majority of servers in a cluster. This artificial

expectation prevents the use of low-power modes in servers; we cannot trivially turn servers off or put them

into a standby mode without the storage system assuming the server has failed. Consequently, even if such

a cluster is grossly underutilized, we cannot disable servers in order to reduce its aggregate power consump-

tion. Thus, these clusters tend to be tragically power-inefficient at low utilization. We propose a simple set

of modifications to HDFS to rectify this problem, and show that these storage systems can be built to be
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power-proportional. We find that running Hadoop clusters in fractional configurations can save between 9%

and 50% of energy consumption, and that there is a trade-off between performance energy consumption.

Finally, we set out to determine why datacenter operators chronically underutilize servers which host

latency-sensitive workloads. Using memcached as a canonical latency-sensitive workload, we demonstrate

that latency-sensitive workloads suffer substantial degradation in quality-of-service (QoS) when co-located

with other datacenter workloads. This encourages operators to be cautious when provisioning or co-locating

services across large clusters, and this ultimately manifests as the low server utilization we see ubiquitously

in datacenters. However, we find that these QoS problems typically manifest in a limited number of ways: as

increases in queuing delay, scheduling delay, or load imbalance of the latency-sensitive workload. We evalu-

ate several techniques, including interference-aware provisioning and replacing Linux’s CPU scheduler with

a scheduler previous proposed in the literature, to ameliorate QoS problems when co-locating memcached

with other workloads. We ultimately show that good QoS for latency-sensitive applications can indeed be

maintained while still running these servers at high utilization. Judicious application of these techniques can

greatly improve server power-efficiency, and raise a datacenter’s effective throughput per TCO dollar by up

to 53%.

All told, we have found that there exists considerable opportunity to improve the power-efficiency of

datacenters despite the failure of Dennard scaling. The techniques presented in this dissertation are largely

orthogonal, and may be combined. Through judicious focus on server power-efficiency, we can stave off

stagnation in the growth of online services or an explosion of datacenter construction, at least for a time.
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Chapter 1

Introduction

1.1 Motivation

Datacenters are critical assets for today’s Internet giants (Google, Facebook, Microsoft, Amazon, etc.). They

host extraordinary amounts of data, serve requests for millions of users, generate untold profits for their

operators, and have enabled new modes of communication, socialization, and organization for society at-

large. Their steady growth in scale and capability has allowed datacenter operators to continually expand

the reach and benefit of their services. The motivation for the work presented in this dissertation stems

from a simple premise: future scaling of datacenter capability depends upon improvements to server power-

efficiency. That is, without improvements to power-efficiency, datacenter operators will soon face a limit to

the utility and capability of existing facilities that might result in (1) a sudden boom in datacenter construction,

(2) a rapid increase in the cost to operate existing datacenters, or (3) stagnation in the growth of datacenter

capability. This limit is akin to the “Power Wall” that the semiconductor industry has been grappling with

for nearly a decade now [38]. In this chapter, we will argue the merit of this premise, discuss at a high-level

the contemporary opportunities available to improve power-efficiency, and introduce the contributions of this

dissertation towards addressing this new “Datacenter Power Wall”.

Before narrowing this argument down to the concerns of datacenter operators, it is important to acknowl-

edge the stake that humanity at-large has in addressing datacenter power consumption. Our long-term comfort

and survival as a species depends upon addressing anthropogenic climate change [125]. Datacenters consume

a significant and growing fraction of all electric power generated in the world, and are responsible for sub-

stantial carbon dioxide emissions [82]. It is incumbent upon us to reduce datacenter power consumption, as

well as its rate of growth. Concurrently, the cost to own and operate a datacenter can be significantly reduced

by improving its power-efficiency. It is therefore in a datacenter operator’s own interest to reduce energy

consumption, and such action can additionally afford a competitive advantage relative to other datacenters.

Thus, we find ourselves in the fortunate position that business and environmental issues align.

Given this general alignment in goals, this chapter focuses on the short-term business motivations for

1
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improving power-efficiency: reducing datacenter “Total Cost of Ownership”, and enabling continued growth

(i.e. scaling) in the aggregate capability of datacenter facilities.

For most of this dissertation, we pay attention to the problems faced by operators of very large-scale

datacenters—so-called “Warehouse-Scale Computers” (WSC) [11]. Unlike server OEMs (like Dell, HP,

Supermicro, etc.) and chip vendors (like Intel and AMD), operators of WSCs have a substantial, direct

financial interest in improving power-efficiency. For instance, Google reports that they have saved over

a billion dollars from their work on energy-efficiency1. They have already invested significant resources,

research, and effort into improving datacenter power-efficiency, and typically make use of all state-of-the-art

best-practices available. As a result, they now confront more fundamental issues in Computer Architecture

and Distributed Systems that we attempt to tackle within this dissertation.

This rest of this chapter is organized as follows: Section 1.2 introduces the “Total Cost of Ownership”

metric, and shows how power and energy are crucially important to the economics of operating a datacenter.

Section 1.3 argues that datacenter capability is intimately tied to trends in server power efficiency, and that

server power efficiency has abruptly stopped scaling. Section 1.4 surveys the likely sources of improvements

to datacenter power-efficiency in the future. Finally, Section 1.5 introduces the specific contributions of this

dissertation towards addressing the new “Datacenter Power Wall”.

1.2 Total Cost of Ownership

Contemporary warehouse-scale datacenters are massive affairs, housing tens of thousands of servers and

costing several hundreds of millions of dollars to construct [110, 163]. Reducing the cost to own and operate

datacenters is desirable both because they are expensive in absolute terms, and also because a cost-efficient

infrastructure is a competitive advantage.

One metric commonly used to quantify datacenter-related expenses is Total Cost of Ownership (TCO).

TCO is a holistic metric used to describe the overall expenses related to a datacenter. Formally, datacen-

ter TCO is the sum of capital expenses (Capex) and operating expenses (Opex) incurred in purchasing and

operating a datacenter facility over its lifetime. Typically, the cost of real estate, building structure, me-

chanical equipment (such as air handlers and chillers), power delivery equipment (such as power distribution

units, generators, and backup batteries), and IT equipment (such as routers, switches, storage appliances,

and servers) are included in Capex. The cost of energy consumption (such as by IT equipment, mechanical

equipment, and lighting), interest payments on capital expenses, and human resources are included in Opex.

Although there exist several models to estimate TCO for a datacenter [9, 127, 159], the one proposed by

James Hamilton is perhaps the most illustrative and simplest to reason about [52]. Given the assumptions

originally suggested by Hamilton and listed in Table 1.1, we can easily figure the portion of monthly expenses

to purchase and operate a large-scale datacenter, as illustrated in Figure 1.1. One of the key assumptions of

Hamilton’s model is that servers have a 3-year lifetime.

1Google Green: The Big Picture: http://www.google.com/green/bigpicture/, December 2013

http://www.google.com/green/bigpicture/
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(a) Basic Datacenter Assumptions

Critical Load of Facility (CL) 8,000,000 W

Facility Cost per Critical Watt $9/W

Cost of Facility (FC) $72,000,000

“Other” Portion of Facility Cost (O) 18%

Power Usage Effectiveness (PUE) 1.45

Average Critical Load Usage (U) 80%

Cost of Energy (EC) $0.07/kWh

Cost per Server $1,450

Watts per Server (SP) 165 W

Number of Servers 45,978

= (CL - NP)/SP

Cost of Servers (SC) $66,668,100

(b) Financial Assumptions

Annual Cost of Money (CM) 5%

Facility Amortization (FA) 10 years

Server Amortization (SA) 3 years

Network Amortization (NA) 4 years

(c) Networking Assumptions

Servers per rack 40

Discount off MSRP 60%

(d) Networking Gear

Equipment Qty. Cost Power

Cisco 7609 (Border) 2 $362,000 5,000 W

Cisco 6509E (Core) 2 $500,000 5,000 W

Juniper Ex8216 (Agg.) 22 $750,000 10,000 W

Cisco 3560-48TD (Rack) 1,150 $11,995 151 W

Total (NC) $12,807,300 (NP) 413,650 W

(e) Monthly Expenses

Servers $1,998,097 = PMT(CM/12, SA, SC, 0)

Networking $294,943 = PMT(CM/12, NA, NC, 0)

Power/Cooling $626,211 = PMT(CM/12, FA, FC, 0) × (1-O)

Energy $474,208 = CL× U × PUE × EC/1000× 24× 365/12
Other $137,461 = PMT(CM/12, FA, FC, 0) × O

Table 1.1: James Hamilton’s datacenter TCO model [52]. Basic assumptions are provided by Hamilton based

on his experience working for Amazon Web Services and Microsoft Foundation Services. Switch count

is derived from a linear system of two unknowns taking into account switch count, switch power, server

count, server power, and facility critical load. Monthly expenses are simple monthly payments given an

amortization period and annual cost of money. The Microsoft Excel formulas used by Hamilton to calculate

these are given.

Altogether, Hamilton suggests that costs related to servers themselves are usually the single most expen-

sive component of TCO, often accounting for over 50% of it. Expenses related to power delivery and energy

consumption comprise the bulk of the remainder, but neither is overwhelming. No other component (i.e. real

estate, labor, etc.) represents a substantial fraction of datacenter TCO, so we do not consider them in this
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Figure 1.1: Monthly datacenter expenses by category based on the assumptions in Table 1.1.

work. We will revisit the cost of servers when we discuss server utilization.

1.2.1 Energy’s Contribution to TCO

Energy is generally the principal component of datacenter Opex. It is perhaps unintuitive that the cost of

energy is such a modest fraction of TCO, especially given the attention paid to energy-efficiency, as evidenced

by government initiatives like Energy Star [16]. Indeed, outside of the context of a large, warehouse-scale

datacenter, it is easy to estimate the cost of energy for a server would be quite high. For example, let us assume

we have a $2,000 server which consumes on average 200 Watts over an expected 3-year lifespan. Such a

server would itself consume 5,256 kWh during this period. As the server is likely housed in a datacenter

facility, we must also consider the overheads involved to deliver power to the server and to provide adequate

cooling of it. This overhead is usually accounted for with a metric called Power Usage Effectiveness (PUE),

which is the ratio of total power consumed by a facility (including power delivery losses and power spent on

cooling) to power consumed by IT equipment alone (referred to as the “Critical Load”). Thus, a PUE of 1

indicates zero overhead, and a PUE of 2 indicates that there is 1 W of overhead for every 1 W of critical load.

Recent surveys have found industry average PUE to be around 1.8-1.9 [11, 151]. Thus, the server in

our example is perhaps responsible for 5, 256 × 1.9 = 9, 986 kWh of energy consumption. Given that

the average price of electricity in the U.S. in 2012 is $0.12/kWh [162], it could then cost 9, 986 × 0.12 =

$1, 198.37 in energy consumption to operate this server. Assuming the server originally cost $2,000, the

energy consumption alone would add 60% to the total cost to own and operate the server!

In light of the preceding example, how is it possible that Hamilton can figure that the cost of power is only

13% of TCO? The answer is that the operators of today’s largest datacenters have very carefully optimized

the design and placement of their facilities to minimize PUE and the cost of energy, respectively.
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The Dalles, OR (Google Maps) 

Figure 1.2: Google’s datacenter in The Dalles, OR is a short distance from a large hydroelectric dam. Dat-

acenters have sprung up all along the Columbia River gorge as aluminum smelting plants have shuttered,

replacing lost jobs and making use of surplus energy production [97].

Although industry average PUE is 1.8-1.9, modern WSC facilities achieve PUE under 1.2 (Hamilton

pessimistically assumes 1.45) [11, 45]. Thus, instead of wasting 0.8 W for every 1 W of IT equipment,

state-of-the-art facilities waste less than 0.2 W, reducing total energy consumption for our server to less than

6,307 kWh. These newer facilities achieve such low PUE through careful engineering of their mechanical

cooling and power delivery systems. For instance, PUE-optimized facilities eschew centralized, in-line UPS

(uninterruptible power supply) designs which require an inefficient AC-DC-AC conversion, and instead use

distributed UPS solutions which minimize such conversions. They also optimize cooling efficiency by ensur-

ing effective hot-/cold-aisle separation, efficient air handling, and making use of “free” cooling resources like

cold outside air and large bodies of water. See [11] for a more complete survey of state-of-the-art techniques

to reduce PUE.

Datacenter operators are also very conscientious about the physical placement of facilities for multiple

reasons. First, datacenters ultimately need good Internet connectivity. They can save on the cost of laying

fiber optic cable by being near major points-of-presence (POPs) or existing “dark fiber” deployments. Sec-

ond, siting a datacenter in a cold climate has benefits for PUE due to air-side economization, as mentioned

previously. Finally, operators can optimize placement in order to negotiate discounted rates from power gen-

erating utilities. DCs have a notoriously steady rate of power consumption, which makes them excellent

industrial “base load” customers for power plants with low dynamic range (i.e. hydroelectric dams, nuclear

power plants, etc.). It is common for datacenters to be sited near these types of generation facilities (as illus-

trated in Figure 1.2), and they likely are able to pay on the low-end of industrial electricity rates for energy
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(i.e. $0.07 per kWh [162]).

Altogether, with a PUE of 1.2 and an electricity rate of $0.07 per kWh, the server from our earlier

example would only cost $441 in energy to operate over its lifetime, or 22% of its initial capital cost. While

the assumptions to arrive at this lower cost are aggressive and assume a state-of-the-art facility, it elucidates

the argument that server cost, and not energy cost, dominate the TCO for large-scale datacenters. This is

not to say that energy consumption is not an important matter. Rather, it alone may not be the strongest

motivating factor to improve power-efficiency for operators of large datacenters.

Note that this argument relies on the assumption that a server will be replaced or retired after a 3-year

period, as is common practice presently [11]. If a server is left in operation for a longer period of time, its

energy cost will ultimately dominate.

1.2.2 Power’s Contribution to TCO

Power provisioning represents the bulk of datacenter Capex. Even though the cost of energy does not dom-

inate TCO, the cost of power is ironically another story. I say ironically, since any student of rudimentary

physics can tell you that power is merely energy over time. So why should they be treated distinctly? The

answer is that datacenters are engineered and provisioned with respect to a specific peak power budget. The

mechanical equipment responsible for cooling and the electrical equipment responsible for power distribu-

tion have finite peak capacity, and this capacity is independent of how loaded or unloaded the equipment is at

any instant. Thus, peak power provisioning requires up-front capital expenditure, while energy consumption

requires ongoing operational expenditure.

Although Hamilton suggests that power distribution and cooling accounts for only 18% of datacenter

TCO, this is due to the assumption that the Capex is amortized over a 10-year period. In reality, it costs

operators on the order of $9-13 per critical watt (i.e. power drawn by IT equipment) to provision reliable

power and cooling in a datacenter [11]. This figure accounts for the cost of transformers, power-distribution

units (PDUs), circuit breakers, UPS units, batteries, conduits, wiring, backup generators, fuel storage, chillers,

pumps, pipes, cooling towers, plus building space to house all of this equipment. The Uptime Institute

finds that the cost per critical watt can even be as high as $25/W, should the datacenter design to their

“Tier IV” standard which stipulates redundant power delivery and cooling for each rack in a facility [159,

160]. In practice, the cost to provision all of this equipment scales with peak critical load (the maximum

provisioned power draw of the IT equipment), so it is common to relate the cost of power provisioning in

terms of dollars per critical watt. Note that modern datacenters are now being built to accommodate a critical

load of over 60 MW [163], which, for comparison, dwarves the 45 MW power plant of Ohio-class nuclear

submarines [35]. This drives the cost of new datacenters, and even datacenter expansion projects, into the

100s of millions of dollars.

Recall our server from before that cost $2,000 to buy, draws 200 W on average, and cost $441 in energy.

To provision power for this server at $10 per watt could cost an additional $2,000! Obviously, this is an

expensive and unrealistic cost to incur for each server. In reality, the Capex related to power distribution and
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Figure 1.3: Moore’s Law and Dennard scaling’s combined impact has been to provide a potential 2.8×

improvement in capability each CMOS generation with no change in power consumption.

cooling is amortized over a much longer period of time (i.e. 10-15 years) than the servers, which assumes that

the same facility will be used by several generations of servers. Under this assumption of a long amortization

period, the portion of TCO related to power provisioning is thus closer to 18%.

1.3 Datacenter Capability is Limited by Critical Power

The preceding section has outlined how the costs of energy and power in current datacenters are significant,

but not overwhelming. We now consider the interplay between the capability scaling of a datacenter and how

these costs might grow over time.

First and foremost, there is a hidden assumption behind the expectation that the facility Capex can be

amortized over a longer period of time than the server Capex. This assumption is that each new generation

of server is more capable than the last. That is, for a given power budget, a new server has more CPU cores,

a faster clock, new architectural features, or whatever it takes in order to support more users, handle more

data, or otherwise provide a richer service to end users. Otherwise, there is scant motivation for a datacenter

operator to replace their existing server fleet. If operators were to slow the rate of turn-over in their server

fleet because new servers offer no material benefit over older servers, the assumption that facility Capex is

amortized over a longer period of time than server Capex would no longer hold. Consequently, the cost to

provision power and cooling for servers would become a far more substantial fraction of TCO.

So far, this hidden assumption of long relative amortization for facilities has been a safe and efficacious

one to make. Moore’s Law [112,143] and the actualization of Dennard scaling [29] have conspired to provide

us with new servers each CMOS generation that are materially more capable than the last, while staying

within a similar power budget (around 100 W per CPU). The combined effect of Moore’s Law and Dennard
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scaling is illustrated succinctly in Figure 1.3. Moore’s Law observes that subsequent process generations

double in transistor count every 2 years. Optimistically, let’s assume this doubling of transistor count leads

to a doubling of capability through chip multi-processing (i.e. doubling the number of cores). Dennard

scaling (the scaling principles regarding gate size, voltage, and circuit speed that have served as a blueprint

for actualizing Moore’s Law in the sub-micron CMOS era) provides a further increase in capability through

a higher clock rate (reduction in gate and interconnect delay). Moreover, the reduction in gate size and

operating voltage from scaling leads to reduced switching capacitance and energy consumption, respectively.

Thus, ideal application of Dennard scaling leads to a new process generation with 2.8× the capability as the

previous generation, all with no change in power consumption.

Altogether, this has afforded a straight-forward strategy for datacenter operators to deploy and grow their

infrastructure: build and populate a datacenter facility up-front, and replace servers every few years. Studious

realization of Moore’s Law and Dennard scaling by CPU vendors has so far guaranteed that these new servers

would fit within the critical power budget of the facility and be substantially faster.

1.3.1 Other Strategies to Increase Datacenter Capability

Replacing servers with newer, faster servers is by no means the only strategy available to the datacenter oper-

ator to increase overall capability. For instance, to accommodate rapid growth of a service, one could simply

deploy new servers within an existing datacenter facility. While straight-forward sounding, this strategy is

actually terribly expensive to realize. First, even if the facility has the square footage to put the servers, it

will still need spare racks, PDUs, and the mechanical infrastructure in order to accommodate the new servers.

Second, the peak critical power of a facility is a fixed budget, and the new servers will necessarily consume

additional power. Unless spare capacity was already provisioned for the facility, new power and cooling

capacity must be deployed in order to accommodate the new servers (at a cost of $9-13/W). Finally, there

may in fact be a practical limit to the critical power that a facility can deploy. Aside from the difficulties in

expanding a site’s mechanical infrastructure (from both the physical and regulatory points of view), it may

be impossible or unaffordable to obtain increased service from electric utilities [24] due to over-subscription

of distribution lines, substations or generating plants.

An alternative strategy to accommodate growth is to build new datacenters. Again, while straight-forward

sounding, it is at least as difficult and expensive as increasing the number of servers within an existing

datacenter. Aside from the regulatory difficulty and financial risk in siting a new datacenter [24], new facilities

require access to substantial power and cooling resources (water or cold outside air). While these resources

have been readily obtained in locales such as Oregon’s Colombia River Gorge (in part due to the retirement of

local aluminum smelting plants [97]), they may become more difficult to find in the future. Crucially, future

datacenter construction might also require new power generating capacity, whose cost would be incurred by

either the public-at-large or as a higher Capex cost per critical watt for datacenter operators.

In any event, while it is presently possible to increase datacenter capability by either expanding existing

facilities or building new facilities, these strategies will become more difficult or expensive with time. This
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Figure 1.4: Due to the demise of Dennard scaling, Moore’s law affords far less improvement in capability per

Watt each generation than it did previously.

essentially constitutes a “Datacenter Power Wall”: a limit to the amount of power that a datacenter can

economically supply to servers. The conundrum is similar to the CPU “Power Wall”, the apparent limit

to the TDP (Thermal Design Power) of CPU chips: even though we know how to build chips with higher

clock rates and power consumption, they require exotic and costly cooling solutions (i.e. water-cooling,

oil immersion, etc.) [121]. Most importantly, the affordability of expanding capability in datacenters still

depends on amortizing the cost per critical watt of new capacity over several generations of servers. If these

strategies are being pursued in lieu of replacing existing servers, both the Capex related to provisioning

critical power and the Opex related to energy consumption increase as a fraction of TCO.

1.3.2 The End of Dennard Scaling and Advent of Dark Silicon

It should be clear at this point how important increases to server capability and regular turn-over of server

stock are to the economics of datacenters. Without these trends, energy consumption and power provisioning

easily dominate datacenter TCO. Unfortunately, the recent failure of Dennard scaling beyond 90nm [28] and

the specter of Dark Silicon [33] indicate that these trends are about to come to an abrupt end.

The scaling relationships described by Dennard et al. assumed that device leakage (i.e. transistor “off”

current) were insignificant. Unfortunately, this is no longer the case; starting with the 90nm technology node,

further decreases to threshold voltage seem unlikely. In nodes smaller than 90nm, scaling down both op-

erating voltage and threshold voltage results in a net increase in power consumption. To maintain constant

power density with a decreased operating voltage, threshold voltage must, in fact, be increased. This leads to

a reduction in performance relative to ideal scaling (depicted in Figure 1.4). Whereas ideal scaling suggested

a 2.8× improvement in capability per generation in a fixed power budget, current scaling trends will achieve
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at best 1.4× improvement. As users are unlikely to tolerate a reduction in clock frequency (and consequently,

single-thread performance), we are more likely to see the advent of Dark Silicon [33] as the means to main-

tain constant power-density, whereby growing fractions of a chip must necessarily be under-utilized to limit

power consumption. In any event, the break-down of Dennard scaling translates to a 32× opportunity-loss in

capability per Watt over the next decade.

The challenge for datacenter operators going forward is thus to find ways to reconcile this 32× loss

in capability per Watt while contending with the “Datacenter Power Wall”. We must find other ways to

improve the power-efficiency of datacenters without the aid of Dennard scaling. Without such reconciliation,

datacenter operators will either (1) spend considerably more than they have in the past in order to grow their

services, or (2) their growth in capability will stagnate, as the return from replacing servers diminishes.

1.4 Future Improvements to Datacenter Power-Efficiency

The preceding sections have established motivation for improving datacenter power-efficiency. In this section,

we will enumerate where opportunities to improve efficiency lie, and how the contributions of this dissertation

take advantage of these opportunities. In summary, we find that most of the opportunity to improve datacenter

power-efficiency rests with improving the power-efficiency of servers themselves. Additionally, we find that

there are three main opportunities to improve server power-efficiency in the near future: (1) reduce per-server

static power consumption, (2) reduce per-server dynamic power consumption, and (3) raise server utilization

by consolidating workloads or growing workloads on existing hardware.

Unlike the period from 2000-2010 during the infancy of commercial warehouse-scale datacenters, most

of the present opportunity to improve datacenter power-efficiency rests with improving power-efficiency of

the servers themselves. As datacenter PUE has dropped from 1.8 to as low as 1.06 (in the case of Facebook’s

Prineville Datacenter [106]), there is little inefficiency left to address by developing novel power delivery or

cooling architectures. The one exception, however, would be some new design which considerably reduced

the Capex cost to provision power. That notwithstanding, we focus our attention on the IT equipment.

There are two categories of IT equipment to consider: networking equipment, and servers. Hamilton’s

TCO model predicts that networking gear costs around 14% as much as the servers in terms of monthly

expenses, mostly from the considerable expense of aggregation switches. However, the same gear only

consumes around 6% as much power as the servers. Since there is a large number of servers per top-of-rack

switch, and a large number of racks relative to aggregation and core switches, the power consumption of

networking gear is well-amortized over the fleet of servers. Thus, there appears to be little opportunity in

optimizing the power-efficiency of the networking equipment. Therefore, the remainder of this dissertation

focuses only on individual servers.
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Figure 1.5: Scatter-plot of power relative to CPU utilization on a contemporary mid-range server (2-socket

“Westmere” Xeon L5640, each with 6 cores at 2.26 GHz, and 48GB of DDR3 ECC UDRAM). The data were

collected during a run of SPEC power ssj2008 [47]. On this server, total power consumption is essentially

a linear function of utilization. Roughly half of the power consumption of this server at peak load is due to

static power consumption.

1.4.1 Typical Server Power Consumption

To survey the opportunities available to improve server power-efficiency, we now take a look at power con-

sumption for a typical server. Analogous to CMOS circuits, power consumption for servers can be broadly

divided into two categories: static power and dynamic power. Dynamic power is power spent doing useful

work, whereas static power is power spent just by having the server powered on. Dynamic power includes

power spent by the CPU while executing instructions, by memory while servicing requests, by hard drives

while seeking, reading, or writing, by the network interface while handling packets, and so forth. Static

power is composed of all of the activities that enable a server to maintain availability, reliability, and respond

quickly to new client requests. For instance, it includes power spent by fans to move cold air through the

chassis, by disks to keep their platters spinning, by network interfaces to keep links established, and the static

power (e.g. leakage, clock distribution, etc.) of CPUs and caches, memory, and auxiliary chips in the server.

Figure 1.5 shows a scatter-plot of server power consumption versus CPU utilization for a mid-range

server from 2010 (2-socket Westmere, 12 DIMMs). As a crude first-approximation, we can assume that all

of the power consumption at idle (i.e. 0% load) is static power, and any increase in power consumption as

load increases is dynamic power consumption. Note that the slope of this plot is almost linear with CPU

utilization, and can be well-approximate with a straight line. Prior surveys show that CPU usage is a good

predictor of server power consumption [135]. Memory utilization (and by extension, power) largely coincides

with CPU utilization, so it doesn’t need to be considered separately. Other components, such as disk drives

and network interfaces, either consume little power or have very little dynamic range. Also, unlike desktop

systems, server systems eschew high-power GPUs or lack video graphics altogether.
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Figure 1.6: The relationship between power consumption, utilization, and efficiency.

It may be striking that static power is slightly more than half of the peak power consumption of this server;

this server consumes considerable power, even when it is doing nothing. This is analogous to a automobile

driver braking at a stop light while simultaneously holding the gas pedal half-way down. In the context of

the home computer user, this waste is not terribly significant; it is perhaps the equivalent of leaving one 45

Watt light bulb on while the computer is idling. The overhead is colossal, however, when it is multiplied over

100,000 servers in a large facility.

Figure 1.6 shows this plot in terms of efficiency, normalized to the peak efficiency of this server. A

dictionary definition of efficiency is “effective operation as measured by a comparison of production with

cost (as in energy, time, and money)”2. With respect to power-efficiency, this essentially equates to utilization

over power consumption. Note that typical server hardware, with its high static power consumption, tends

to be quite inefficient at low utilization. This is especially tragic, as typical server utilization is quite low in

commercial datacenters. Barroso reports that utilization is nominally between 10 and 50% in a large Google

cluster [10], but Google is far ahead of the industry in this case. Various analyses estimate industry-wide

utilization between 6% [74] and 12% [40, 164], and there are even studies that suggest utilization is closer to

7% in Amazon’s EC2, the largest public cloud service [93].

Overall, high static power contributes significantly to the overall power-inefficiency of datacenters. Bar-

roso and Hölzle introduced this problem to a wide audience with their influential paper, “The Case for

Energy-Proportional Computing” [10]. This led to an industry-wide effort to reduce static power and build

“power-proportional” servers: servers which consume power proportional to how much work they are doing.

Assuming servers become more power-proportional over time, dynamic power consumption will grow in

2http://www.merriam-webster.com/dictionary/efficiency/

http://www.merriam-webster.com/dictionary/efficiency/
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Figure 1.7: Power consumption by subsystem for a representative server at Google in 2009 [11]. “Other”

includes fans, power supply losses, southbridge, and other miscellaneous components.

importance. Future reductions to dynamic power consumption will come from microarchitectural improve-

ments and architectural specialization, as we can no longer rely on the steady march of Dennard scaling. The

present challenge is that no single hardware component dominates server power consumption. Figure 1.7 de-

picts power consumption by server subsystem, as reported by Google in 2009 [11]. There is no “silver bullet”

component of the server that needs to be fixed, so instead we must undertake the arduous work of improving

them all, starting with the CPU and main memory. Nevertheless, reducing server static and dynamic power

consumption are the most direct strategies to improve datacenter power-efficiency.

1.4.2 Raising Server Utilization to Improve Power-Efficiency

Hardware power consumption improvements notwithstanding, there is an alternative strategy to improve

efficiency: raise server utilization. In Figure 1.6, we showed that power-efficiency is poor at low utilization

and that servers tend to be gravely underutilized. This suggests that raising server utilization is a straight-

forward, hardware agnostic strategy to improve datacenter power-efficiency (Figure 1.8).

In practice, raising server utilization implies many things. First, we don’t mean for operators to dis-

patch work to a server solely to raise its utilization; all other things being equal, increasing utilization will

only increase power consumption. Instead, a marginal increase in one server’s utilization should represent a

commiserate reduction in utilization of other servers. This reduction can either be in space (i.e. reduce the

utilization of the server next to this one) or in time (i.e. reduce the utilization of some server in the future, as

in absorbing future growth). The shifting of load in this manner leads to an aggregate reduction in datacenter

power consumption if, by shifting load away from some servers, we can power them off entirely and prevent

them from consuming static power. Second, it implies that load can be redistributed across servers and that
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Figure 1.8: An alternative strategy to improve a given server’s power-efficiency is to raise its utilization.

Modest increases in utilization result in large improvements to efficiency. Moreover, these improvements are

orthogonal to other hardware optimizations. Even though an increase in utilization leads to an increase in

power consumption of a given server, it would coincide with a reduction in the number of servers needed to

deploy a distributed service, leading to cluster-wide benefits.

we can provide acceptable quality of service on servers at high utilization. This requires designing software

amenable to load redistribution, and carefully provisioning workloads to not overload any servers. Finally,

if by raising server utilization in the present we can avoid having to turn on some server in the future, we

may be able to avoid purchasing that server in the first place. Thus, the TCO consequences of raising server

utilization contributes both to the Capex to provision power and to the Capex to purchase servers.

1.5 Contributions of this Dissertation

The preceding sections of this chapter have laid out the case that there exists a new “Datacenter Power Wall”

and holistically described the form in which new improvements to datacenter power-efficiency will come. As

datacenter mechanical and power distribution facilities are now quite efficient, the most viable path toward

improving overall datacenter power-efficiency lies in improving the efficiency of the servers themselves. We

identified three broad opportunities available in order to achieve this: (1) reduce per-server dynamic power

consumption, (2) reduce per-server static power consumption, and (3) raise server utilization by consolidating

workloads or growing workloads on existing hardware.

With this framework in mind, the specific contributions of this dissertation are easy to put into context.

The subsequent chapters explore novel, promising embodiments of the three opportunities identified above:
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• Chapter 2 proposes a novel DRAM module architecture to reduce the dynamic power consumption of

main memory.

• Chapter 3 introduces a novel control mechanism for per-core power gating in order to reduce the static

power consumption of multi-core CPUs.

• Chapter 4 describes how contemporary distributed storage systems preclude the use of low-power

modes and hamper efforts to raise server utilization.

• Chapter 5 addresses head-on the quality-of-service challenges in raising the utilization of servers host-

ing low-latency applications.

The following sections summarize the salient aspects of these contributions.

1.5.1 Energy-Efficient DRAM module

In Chapter 2, we present Multicore DIMM (MCDIMM), a modification to the architecture of traditional

DDRx main memory modules optimized for energy-efficiency. MCDIMM modules divide the wide, 64-bit

rank interface presented by ordinary DIMMs into smaller rank subsets. By accessing rank subsets individ-

ually, fewer DRAM chips are activated per column access (i.e. cache-line refill), which greatly reduces dy-

namic energy consumption. Additionally, we describe an energy-efficient implementation of error-correction

codes for MCDIMMs, as well as “chipkill” reliability, which tolerates the failure of entire DRAM devices.

For ordinary server configurations and across a wide range of benchmarks, we estimate more than 20% aver-

age savings in memory dynamic power consumption, though the impact on total system power consumption

is more modest. We also describe additional, unexpected performance and static-power consumption benefits

from rank subsetting.

1.5.2 Per-Core Power Gating

In Chapter 3, we propose an architecture for per-core power gating (PCPG) of multicore processors, where

the power supply for individual CPU cores can be cut entirely. We propose that servers running at low to

moderate utilization, as is common in datacenters, could operate with some of their cores gated off. Gating

the power to a core eliminates its static power consumption, but requires flushing its caches and precludes

using the core to execute workloads until power is restored. In our proposal, we improve the utility of PCPG

by coordinating power gating actions with the operating system, migrating workloads off of gated cores onto

active cores. This is in contrast to contemporary industry implementations of PCPG that gate cores reactively.

We control the gating of cores with a dynamic power manager which continually monitors CPU utilization.

Our OS-integrated approach to PCPG maximizes the opportunities available to utilize PCPG relative to OS-

agnostic approaches, and protects applications from incurring the latency of waking a sleeping core. We show

that PCPG is beneficial for datacenter workloads, and that it can reduce CPU power consumption by up to

40% for underutilized systems with minimal impact on performance.
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1.5.3 Power-Proportional Hadoop

Chapters 2 and 3 propose hardware modifications to improve the power-efficiency of individual servers di-

rectly. Chapters 4 and 5 take a different tack and holistically assess how utilization across clusters of servers

can be manipulated to improve power-efficiency.

In Chapter 4, we describe how contemporary distributed storage systems, such as Hadoop’s Distributed

File System (HDFS), expect the perpetual availability of the vast majority of servers in a cluster. This arti-

ficial expectation prevents the use of low-power modes in servers; we cannot trivially turn servers off or put

them into a standby mode without the storage system assuming the server has failed. Consequently, even if

such a cluster is grossly underutilized, we cannot disable servers in order to reduce its power consumption.

Thus, these clusters tend to be tragically power-inefficient at low utilization. We propose a simple set of

modifications to HDFS to rectify this problem, and show that these storage systems can be built to be power-

proportional. We find that running Hadoop clusters in fractional configurations can save between 9% and

50% of energy consumption, and that there is a trade-off between performance energy consumption.

1.5.4 High Server Utilization and Sub-millisecond Quality-of-Service

Finally, Chapter 5 sets out to determine why datacenter operators chronically underutilize servers which host

latency-sensitive workloads. Using memcached as a canonical latency-sensitive workload, we demonstrate

that latency-sensitive workloads suffer substantial degradation in quality-of-service (QoS) when co-located

with other datacenter workloads. This encourages operators to be cautious when provisioning or co-locating

services across large clusters, and this ultimately manifests as the low server utilization we see ubiquitously

in datacenters. However, we find that these QoS problems typically manifest in a limited number of ways: as

increases in queuing delay, scheduling delay, or load imbalance of the latency-sensitive workload. We evalu-

ate several techniques, including interference-aware provisioning and replacing Linux’s CPU scheduler with

a scheduler previous proposed in the literature, to ameliorate QoS problems when co-locating memcached

with other workloads. We ultimately show that good QoS for latency-sensitive applications can indeed be

maintained while still running these servers at high utilization. Judicious application of these techniques can

greatly improve server power-efficiency, and raise a datacenter’s effective throughput per TCO dollar by up

to 53%.

1.5.5 Summary

All told, we have found that there exists considerable opportunity to improve the power-efficiency of dat-

acenters despite the failure of Dennard scaling. The techniques presented in this dissertation are largely

orthogonal, and may be combined. Through judicious focus on server power-efficiency, we can stave off

stagnation in the growth of online services or an explosion of datacenter construction, at least for a time.



Chapter 2

Improving Power-Efficiency with

Memory Rank Subsetting

We begin the technical proceedings of this dissertation by describing a technique to reduce per-server dynamic

power consumption called rank subsetting. Semiconductor process technology scaling has enabled dramatic

improvements in the capacity and peak bandwidth of DRAM devices. However, current standard DDRx

DIMM memory interfaces are not well tailored to achieve high power-efficiency and performance in modern

chip-multiprocessor-based computer systems. As discussed in Section 1.4.1, main memory accounts for

a large and growing fraction of system power [91, 111]. There are three drivers of this trend: growing

power dissipation in DRAM devices (i.e. DRAM chips), growing number of DRAM devices per system,

and growing interconnect power. DRAM devices are not under a tight TDP constraint like CPUs, so there

is little industry pressure to reduce the power consumption per cell or prevent the power per device from

increasing. Moreover, DRAM processes are not expected to scale as fast as logic processes, so there is

upward pressure on the number of DRAM chips per processor. Finally, memory access involves inter-chip

communication, which improves more slowly than storage and local transistor operations in terms of speed

and energy consumption [61].

The power-efficiency of accessing main-memory data is suboptimal on chip multiprocessors (CMPs) em-

ploying contemporary DDRx processor-memory interfaces. Several DRAM chips, which compose a rank

in a dual-inline memory module (DIMM), are involved per main-memory access, and the number of bits

activated and restored per access could be more than 100 times that of a typical cache line size. As shown in

Section 2.1.1, since memory access streams from multicore and manycore processors have lower correlation

in access address (in other words, it looks more random) than those from a single core, conventional tech-

niques of utilizing more data from activated bits by reordering memory access requests [136] are less useful.

Therefore, the energy to activate data and restore them is largely wasted, causing a problem called memory

overfetch [2].

17
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There are several recent proposals [2, 166, 182] that share a main goal of saving dynamic main-memory

access energy by dividing a memory rank into subsets, and making a subset, rather than a whole rank, serve

a memory request. This saves dynamic power by reducing memory overfetch. We refer to this category of

proposals as rank subsetting. While promising, these studies on rank subsetting are limited. Our early work

published in Computer Architecture Letters, Multicore DIMM (MCDIMM) [2], did not address memory ca-

pacity issues, or evaluate DRAM low-power modes. Module threading [166] focused on micro-architectural

details and bus utilization, but did not evaluate system-level impacts. Mini-rank [182] treated memory power

and processor power in isolation, which overstates its efficacy. Since a subset of a rank effectively has a

narrower datapath than a full rank, data transfers take longer, which can negate the benefit of dynamic power

saving. It is therefore hard to judge if rank subsetting provides enough benefits to computer systems when

both processor and main memory are considered and other architectural techniques are taken into account.

Moreover, none of these previous studies analyzed or devised solutions for high-reliability, which is critical

for datacenter computing.

In this chapter, we holistically assess the effectiveness of rank subsetting on the performance, energy-

efficiency, and reliability of a whole system, not just of individual components. We first model memory

system power analytically including the degree of rank subsetting, memory capacity, system performance,

and reliability. We validate these analyses by simulating a chip-multiprocessor system using multithreaded

and consolidated workloads. We also develop a novel solution which extends our Multicore DIMM design

to support high-reliability systems, and show that compared with conventional chipkill [27] approaches it

can lead to much higher system-level energy-efficiency and performance at the expense of additional DRAM

capacity. Throughout this evaluation, we consistently use the system energy-delay product metric to judge

the efficacy of rank subsetting in the context of a whole system.

Our key findings and contributions regarding rank subsetting in modern and future processor-memory

interfaces are as follows:

• From model analyses and simulations, we show that 2 to 4 rank subsets is a sweet spot in terms of

main-memory power and system energy-delay product. The best configuration depends on application

characteristics and memory system capacity.

• Our evaluation shows that subsetting memory ranks and exploiting DRAM low-power modes are

largely complementary, since the former technique is applied to saving dynamic energy on memory

accesses while the latter one is effective when DRAM chips mostly stay idle. They can be synergistic

as well, which is especially apparent on high-reliability systems since both access and static power of

main memory take a large portion of total system power.

• Finally, we demonstrate that rank subsetting affords a new category of trade-off in the design of high-

reliability memory systems. Traditional chipkill solutions achieve energy-inefficient chip-level error

recovery at no capacity or component cost relative to conventional ECC, whereas rank subsetting en-

ables energy-efficient reliability in exchange for reduced capacity-efficiency.
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Figure 2.1: A canonical representation of a DRAM chip with 8 banks. The movement of data during a

typical memory transaction consists of an ACTIVATE command (1), READ or WRITE commands (2) and

PRECHARGE command (3).

In a typical high-throughput server configuration with 4 ranks per memory controller and 4 memory

controllers in a system, dividing a memory rank into four subsets and applying DRAM low-power modes

provides 22.3% saving in memory dynamic power, 62.0% in memory static power, and 17.8% improvement

in system energy-delay product with largely unchanged IPC (instructions per cycle) on tested applications.

In high-availability “chipkill” systems, which work correctly even with a failed chip in every memory rank,

a Multicore DIMM-based high-reliability memory system uses 42.8% less dynamic memory power, and

provides a 12.0% better system energy-delay product compared with a conventional chipkill system of the

same data capacity, but needs 22.2% more DRAM devices.

2.1 Energy Efficient and Reliable Memory Modules

In this section we first review modern processor-memory interfaces and the concept of rank subsetting, which

has been recently proposed to improve the energy efficiency of main-memory accesses. System-level im-

pacts of rank subsetting are analyzed on performance, energy-efficiency, and reliability, which are all tightly

coupled. Then we extend the Multicore DIMM design for high-reliability systems.

2.1.1 Background

Organizations of Modern DRAM Devices and Memory Channels

Main-memory systems are built from DRAM modules, which in turn are comprised of DRAM chips [69].

DRAM is used to store main-memory data since its storage density (smaller than 10F 2 per cell, where F is
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Figure 2.2: A conventional memory channel where a memory controller and two memory modules are con-

nected through a shared bus. Each memory module is composed of one or more ranks, each rank with 8 or

16 DRAM chips.

the minimum feature size of a fabrication process) is much higher than that of SRAM (bigger than 100F 2

per cell) [155], and its random access time (lower than 100ns) is much lower than that of NAND flash (in

the order of us) and rotating magnetic storage (in the order of ms). Modern DRAM chips contain billions of

bit cells, organized as a number of two-dimensional banks. The data output, command, and address signals

of a DRAM chip are all shared by its banks. Figure 2.1 shows a canonical representation of a DRAM bank,

numbered to indicate the salient phases of a typical interaction with a bank. First, a row-level command called

ACTIVATE (1) is issued to the chip, instructing a specified bank to latch all of the bits in a given row into sense

amplifiers. Although the readout from a row is destructive, the sense amplifiers will clamp the bitlines of the

bank to whatever value they detected, which restores the contents of the original bit cells. Subsequently, one

or more column-level commands (READ or WRITE) may follow (2), initiating data transfers. The number

of bits transferred per READ or WRITE command is the product of the data path width of the chip (typically

4, 8, or 16 bits per chip, termed ×4, ×8, and ×16) and the burst length (8 in DDR3 [71]). Once a sequence

of read or write operations is over, a row-level command called PRECHARGE (3) is sent to the bank in order

to precharge the bitlines in preparation for the next ACTIVATE command. When two consecutive memory

accesses to the same bank of the same DRAM rank select different rows, a DRAM row-buffer conflict [180]

occurs requiring PRECHARGE and ACTIVATE commands before the second row can be accessed. Were

the accesses to go to the same row (as is common in single-threaded workloads), these row-level commands

could be omitted.

The bandwidth and capacity demands from a modern microprocessor keep increasing, since the processor

has more cores, the cache size per core does not increase much, and emerging applications such as in-memory

databases need even higher bandwidth, more capacity, or both from main memory. A single DRAM chip

therefore cannot satisfy the latency, bandwidth, and capacity demands of a microprocessor as a main memory.

As a result, several (typically 8 or 16) DRAM chips compose an access unit called a rank. All DRAM chips

in a rank operate in unison, i.e. receiving the same control (address and command) signals and transferring

data in parallel. One or more ranks are packaged on a printed circuit board and called a memory module.
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Dual in-line memory modules (DIMMs) are widely used in contemporary computer systems that have 64-bit

data buses. Memory modules are connected to a memory controller, which feeds control signals to ranks and

exchanges data through a shared bus to form a memory channel.

Figure 2.2 shows a conventional memory channel which contains two DIMMs attached to a memory

controller through a bus. In a memory channel, commands generated from the memory controller may be

issued to one rank while transferring data to or from another rank in a pipelined fashion. A module with

several ranks is logically similar to having several modules, each with only one rank. Command, clock,

and address signals from a memory controller are broadcast to all DRAM chips in all ranks on a memory

channel. As a result, all of the DRAM chips within a rank act like a single DRAM chip with a wider data

path and longer rows. Chip select signals are used to mask unintended recipients from commands. Memory

controllers have historically been placed outside of microprocessors (in a chip called the northbridge), but are

more recently integrated into the CPU package [14, 77].

Trends in Modern DRAM Devices and the Overfetch Problem

As the throughput of microprocessors has increased, significant effort has been invested in improving the

data path bandwidth of DRAM chips. This is primarily achieved by boosting the signaling rate of the data

bus and by internally coarsening the granularity of access in a DRAM chip (essentially, enlarging the number

of bits that are fetched from rows in parallel). Despite the increase in the capacity and bandwidth of DRAM

chips, the latency of a random access (tRC) composed of a sequence of PRECHARGE, ACTIVATE, and

READ/WRITE in a chip has remained relatively constant in terms of absolute time, and has increased in

terms of bus cycles, as seen in Figure 2.3. As data transfer rates improve, the maximum number of ranks

attached to a bus decreases and control signals are registered per rank, due in both cases to signal integrity

issues. To enhance energy-efficiency, memory controllers may utilize the low-power states of DRAMs when

the requests from the processors are infrequent [64].

An error correcting code (ECC) is often employed to cope with hard and soft errors on data storage

and communication paths. Single bit error correction and double bit error detection (SECDED) is the most

common scheme, but some computer systems need higher levels of error correction. The most well known

technique to correct multi-bit errors is chipkill [27], which protects against failure of an entire memory chip.

While the organizational philosophy of DRAM chips has changed little over the past several technology

generations, their capacity and communication throughput have followed Moore’s law [69]. As the capacity

of DRAM chips has grown over successive generations, the number of rows and the number of banks in a

chip have each increased to keep pace. The length of a row (termed the page size) of modern DRAM chips

is between 4K and 16K bits. Assuming that the page size is 8K bits and a rank consists of 8 DRAM chips,

64K bits are activated by an ACTIVATE command to the rank. Considering that the unit of most accesses to

DRAM ranks is a cache line and the size of a cache line is typically 1K bits or below, only a few bits are used

by column accesses relative to the page size following a row activation. We call this phenomenon overfetch.

This memory overfetch can significantly lower the energy efficiency of accessing main-memory data
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Figure 2.3: Random access latencies of chips from several speed bins of successive DRAM generations are

shown. While random access latency has fallen slightly in absolute terms from SDRAM to DDR3, it has

increased significantly in terms of clock cycles (tCK).

stored in modern DDRx DRAM chips. Figure 2.4 shows a power breakdown of a Micron 2Gb DDR3 DRAM

chip [107]. The labels ×8 and ×16 indicate the width of a data path and row/col means the ratio between row-

level command pairs (ACTIVATE/PRECHARGE) and column-level commands (READ or WRITE). Row-

level commands not only take a long time, but also consume a lot of power. When row/col = 1, ACTIVATE

and PRECHARGE take more than half the DRAM power. Thus, it is desirable to decrease the row/col ratio.

In modern DRAM chips, refresh power is much smaller than other components; refresh power consumption

is mainly noticeable on large memory capacity configurations such as those in Section 2.3.3.

Alleviating Overfetch by Memory Access Scheduling and Rank Subsetting

Out-of-order execution with non-blocking caches, simultaneous multithreading, chip multiprocessing, and

direct-memory accesses [55] are now common in microprocessors. Such processors support multiple out-

standing memory requests. A naı̈ve memory controller serves these requests first-come-first-serve (FCFS).

More advanced memory controllers adopt memory access scheduling schemes to reorder and group these re-

quests to lower the DRAM row-buffer conflicts and to minimize the performance degradation due to various

timing constraints on DRAM accesses. Reducing row-buffer conflicts helps with overfetch, too. There have

been multiple memory access scheduling proposals [115, 119, 136] to exploit these characteristics to achieve

higher performance.

New processor-memory interfaces such as module threading [166], mini-rank [182], and Multicore DIMM [2]

address the overfetch issue. These proposals alleviate the overfetch problem by dividing the DRAM chips

within a rank into multiple subsets and making a subset (not a whole rank) serve a memory access, as illus-

trated in Figure 2.5. We call this technique rank subsetting. Rank subsetting requires minimal changes (a

few additional address lines if existing address lines are too few) to the existing processor-memory interface,

since conventional DRAM chips can be used without modification. Memory controllers treat each subset as

a separate rank with longer data transfer time, so that the modifications to the memory controllers are minor.
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Figure 2.4: DRAM power breakdown of a Micron 2Gb DDR3-1333 SDRAM chip [107]. row/col

means a ratio between row-level commands (ACTIVATE/PRECHARGE) and column-level commands

(READ/WRITE). The DRAM is assumed to output read data for 50% of clock cycles and input data for

50% of clock cycles except the case of ×16 and row/col = 1, where it inputs and outputs data for 40% of

clock cycles each to satisfy the minimum delay between ACTIVATE commands to different banks.

Narrowing each data channel and providing more channels has effects similar to rank subsetting, but requires

substantial changes to memory module standards, more memory controllers, and more control signals from

microprocessors to provide the same main-memory throughput. These new interface proposals primarily

save DRAM access energy, but have additional costs and benefits. Rank subsetting increases DRAM access

latency and changes the effective bandwidth of memory channels. Since it changes the number of DRAM

chips involved in a memory access, traditional reliability solutions such as chipkill must be revisited as well.

So the effectiveness of rank subsetting must be assessed in the context of the performance, energy efficiency,

and reliability of a whole system, not just of individual components.

2.1.2 Implications of Rank Subsetting

Rank subsetting alleviates the overfetch problem by dividing each rank into smaller subsets of chips and

sending memory commands to only one subset at a time. Figure 2.6 shows an exemplary Multicore DIMM

memory channel with two memory ranks, one per DIMM. Each rank is divided into two rank subsets called

virtual memory devices (VMDs). Physically the same data bus as in a conventional memory channel is

used (×64 in a DIMM memory channel), but it is divided into two logical data buses, each occupying half

of the physical bus (×32 per logical data bus). A demux register is placed on each rank, which routes

(demultiplexes) control signals to the proper rank subset to enable independent operation.

The primary goal of rank subsetting is to improve the energy efficiency of memory systems by saving

DRAM access energy, which is important since main-memory DRAM power can reach or surpass the pro-

cessor power in systems with high memory capacity or high reliability, as shown in Section 2.3. In order to

understand how much energy can be saved by rank subsetting, we first identify the sources of DRAM power

consumption. DRAM power can be categorized into two parts—static power and dynamic power. Static
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Figure 2.5: Illustrative comparison between conventional DIMMs and DIMMs with rank-subsetting. Con-

ventional DIMMs service requests by accessing all DRAM devices in a rank simultaneously. DIMM archi-

tectures with rank-subsetting service requests by routing commands to a subset of devices in a rank. Signaling

on the memory channel is otherwise unchanged.

power is independent of activity, and mainly comprised of power consumed from peripheral circuits (like

DLL and I/O buffers), leaky transistors, and refresh operations. Dynamic power can further be categorized to

two parts since DRAM access is a two step process. First, bitlines in a bank of DRAM chip are precharged,

and data in a row of the bank is delivered to the bitlines and latched (activated) to sense amplifiers by row-

level commands. This consumes activate-precharge power. Then, a part of the row is read or updated by

column-level commands. This consumes read-write power. Dynamic power consumption is proportional to

the rate of each operation. However since a row can be read or written multiple times once it is activated, the

rates of activate-precharge and read-write operations can be different.

We can model the total power consumed in a memory channel as follows. When D is the number of
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Figure 2.6: A memory channel with two Multicore DIMMs (MCDIMMs) with each divided into two subsets

called virtual memory devices (VMDs). Each MCDIMM has a demux register instead of a normal register

routing control signals to each VMD.

DRAM chips per subset, S is the number of subsets per rank, and R is the number of ranks per channel,

Total main−memory power = D · S ·R · SP + ERW ·BWRW +D · EAP · fAP , (2.1)

where SP is the static power of a DRAM chip, ERW is the energy needed to read or write a bit 1, BWRW

is the read-write bandwidth per memory channel (measured, not peak), EAP is the energy to activate and

precharge a row in a DRAM chip, and fAP is the frequency of the activate-precharge operation pairs in the

memory channel. The first term of Equation (2.1) is the static power portion of the total memory power, the

second is the read-write power, and the third is the activate-precharge power which, due to overfetch, grows

linearly with D. Assuming that misses from last-level caches are the dominant portion of memory access

requests, BWRW = fCM · CL where fCM is the frequency of cache misses and CL is the line size of the

last-level caches. If we analyze fAP further,

fAP =
fAP

fCM

· fCM =
fAP

fCM

·

BWRW

CL
= β ·

BWRW

CL
, (2.2)

showing that the dynamic power of main memory is proportional to the read-write bandwidth per memory

channel and β, the ratio of the number of rows being activated to the number of memory requests to the

memory channel. β indicates the frequency of row-buffer conflicts.

Rank subsetting lowers D while keeping D · S constant. Equation (2.1) and (2.2) indicate that this

mainly decreases activate-precharge power, which can be more than half of DRAM power [108] as shown in

Figure 2.4. (We show below that SP and BWRW are affected by rank subsetting as well.) Saving activate-

precharge power is more significant if β is higher. The frequency of row-buffer conflicts depends on various

factors including memory access patterns of applications and the number of applications running on compu-

tation cores, memory address interleaving across memory controllers, memory access scheduling policies in

1The major portion of read or write power consumption is from wires transferring control and data signals through chip-to-chip I/O

and DRAM chip global interconnects, which is similar for both read and write operations. We therefore assume that both operations

consume the same power as a first order approximation.
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memory controllers, and the number of DRAM banks in memory systems. Section 2.3.1 further evaluates the

dependency of row-buffer conflicts on the access patterns of running applications and the number of DRAM

banks in an example chip-multithreaded (CMT) processor. Activate-precharge power can also be lowered

by increasing the cache line size (CL). However CL is around 64bytes while the size of a row in a rank is

typically 8 or 16Kbytes, which is orders of magnitude smaller. Also larger cache line sizes can increase miss

rate and harm application performance [41, 169].

Both dynamic power terms in (2.1) are proportional to the bandwidth of memory channels BWRW , which

is in turn proportional to instructions per cycle (IPC). Rank subsetting increases the access latency of memory

requests. However, modern throughput-oriented CMPs such as the Sun UltraSparc T2 [73] can amortize or

tolerate this latency with features like simultaneous multithreading or speculative out-of-order execution.

They allow memory controllers to reorder and pipeline memory requests, to lower the correlation between

memory latency and bandwidth.

Effective bandwidth depends on multiple factors such as load-balancing across memory channels and

DRAM banks, memory access patterns, and inherent timing constraints of DRAM chips. In DDR3 [107], for

example, 7.5ns is the minimum time from the end of a previous write transaction to the issuance of a following

read command (tWTR). Recent DRAM chips are limited in the rate at which they can activate different banks

in a device (tRR and tFAW). This limitation can lower the effective throughput since the row-buffer conflict

ratio is high on modern CMPs. This throughput degradation can be alleviated when R or S increases. As R

increases, there are more banks a memory controller can utilize and there is no timing constraint on activating

rows in different ranks. Rank subsetting also effectively increases the number of independent DRAM banks

on a module, since each subset can be accessing different banks. As S increases, cache line transfer time

per rank subset increases reaching or surpassing the minimal inter-activate time, which effectively renders it

irrelevant. Increasing S reduces the effect of other timing constraints as well, such as switches between read

and write operations and bus ownership changes. So the impact of rank subsetting (varying S) on system

performance is determined by the interplay of these different factors, and also depends on the characteristics

of the applications running on the system.

Furthermore, the number of ranks in a memory channel can significantly affect the memory system power.

When R is large or the memory channel is not utilized frequently (BWRW is small), static power dominates.

The memory controller can then utilize low-power DRAM modes to decrease the static power (SP ). This

typically lowers BWRW as well since it takes time for DRAM chips to enter or exit low-power modes, and

commands to utilize low-power modes compete with other commands to DRAM.

It can be seen that rank subsetting changes both the energy-efficiency and performance of computer sys-

tems. So we need a metric to measure the effectiveness of rank subsetting at the system level, combining

both performance and energy-efficiency instead of presenting memory system power and processor perfor-

mance separately. We pick system energy-delay product (EDP), which is a product of the execution time of a

workload running on the system and the energy consumed by computation cores and memory systems during

execution [44].
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2.1.3 Adding Reliability to Multicore DIMMs

Rank Subsets with Single-Bit Error Correction and Double-Bit Error Detection

Soft and hard errors occur frequently on modern DRAM devices [144]. Memory systems adopt error cor-

recting codes (ECCs [129]) that add redundant or parity symbols (typically bits) to data symbols in order to

recover from these errors. Since data stored in DRAM devices are accessed at a block granularity such as

an OS page or a cache line, linear block codes that are processed on a block-by-block basis are popular. An

n-symbol codeword of a linear block code is composed of k data symbols and (n − k) parity symbols that

are encoded and decoded together. The redundancy of a code is described in terms of its code rate, k/n,

which is a ratio of data symbols to overall symbols. The minimal Hamming distance of two codewords is the

number of locations where the corresponding symbols are different and determines the strength (the num-

ber of detectable or correctable errors) of the code. Codes with lower code rates or higher redundancy have

higher Hamming distance, so they can correct or detect more errors. The most popular codes used in memory

systems enable single-bit error correction and double-bit error detection (SECDED), in which 8 parity and

64 data bits occur in a codeword of 72 bits, so the code rate is 8/9. It is a Hamming code [129] with the

minimal Hamming distance of 4, which is needed to correct one symbol error and detect two symbol errors.

Since it has 64 data bits, it is used on a rank and one ×8 DRAM chip or two ×4 chips are added to the rank

to provide the parity bits.

There are two ways to support SECDED-level reliability on Multicore DIMMs. One way is to add a

DRAM chip per subset to supply parity bits. When a rank is divided into S rank subsets, each subset has a

data path width of 64/S. 64 data bits of the 72-bit SECDED codeword are hence from S bursts of the rank

subset, so 8 parity bits can be provided by a DRAM chip with a data path width of 8/S. When a rank has more

than 2 subsets, the data path width needed for parity is lower than 4. Since DRAM chips with this low data

path with are not popular, the code rate (a.k.a. coding efficiency) of supporting SECDED-level reliability

is lower on Multicore DIMMs compared to conventional DIMMs. One exception is the case of 2 subsets

having 9 ×4 DRAM chips each. The other way is to use a DRAM device with a wider data path, such as ×9,

instead of ×8. Though not popular, some DRAM vendors provide such configurations (RLDRAM [109] and

RDRAM).

Rank Subsets with Single-Chip Error Correction and Double-Chip Error Detection

SECDED schemes protect against single-bit errors, such as DRAM bit cell faults and wire stuck-at faults

in DRAM ranks or rank subsets. High-availability systems often demand the stronger reliability of single-

chip error correct, double-chip error detect (SCCDCD) schemes, sometimes called chipkill. These schemes

can correct the failure of an entire DRAM chip, and detect the failure of two DRAM chips. There are

two common practices for implementing SCCDCD reliability in memory systems: interleaving SECDED-

quality codewords across multiple ranks [27], as implemented by IBM’s xSeries, or employing stronger error

correcting codes [3], as found in the AMD Opteron.
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The first scheme observes that codewords can be interleaved across ranks such that no more than 1 bit of

a codeword comes from a single DRAM chip. For example, if a rank supporting SECDED-level reliability

consists of 18 ×4 DRAM chips, we combine 4 of these into a single conceptual rank consisting of 72 chips.

In this case, four SECDED codewords of 72-bits interleaved across 288-bits are sufficient to recover from

whole chip failures, since each bit from a DRAM chip belongs to a different codeword. While conceptually

simple, this solution suffers from the fact that all DRAM chips in the conceptual rank (72 chips in the example

above) must be activated on each access, exacerbating the memory overfetch problem and leading to poor

dynamic energy efficiency. This type of SCCDCD solution is also impractical with ×8 and ×16 chips, since

they would require 8 and 16 ranks per transaction, respectively. It should be noted that DRAMs with long

minimum burst lengths (like DDR3, which has a minimum burst length of 8) render SCCDCD schemes that

interleave transactions across several ranks unreasonable, since they grow the memory transaction length

beyond that of a typical cache line. For example, were the IBM chipkill solution to be implemented with ×4

DRAM chips with burst-length 8, each memory transaction would contain four 64-byte cache lines.

The other approach observes that DRAM chip failures manifest as a burst of bit-errors in codewords with

a burst-length the same as or multiples of the width of the chip’s data path (e.g. failure of a ×4 chip is a

burst-error of length 4). In practice, non-binary cyclic error-correcting codes like Reed-Solomon (RS) codes

can be used to support the SCCDCD feature [172]. While a bit is a symbol in the SECDED Hamming code,

multiple bits constitute a symbol in the RS codes, and a natural symbol size for the chipkill protection is

the data path width of a DRAM chip so that errors from a chip can be regarded as a single symbol error,

which is correctable. Using m-bit symbols, the maximum codeword size is 2m − 1 symbols. An RS code is

a maximum distance separable code that has the minimum Hamming distance k + 1 with k parity symbols,

so that at least 3 parity symbols (Hamming distance 4) in addition to the data symbols are needed to detect

two symbol errors and correct one symbol error. An RS code with 4-bit symbols can’t be used for standard

DIMMs since its maximum code size is ((24 − 1) × 4 =)60 bits, which is lower than the 72-bit data path

of a standard DIMM. Hence a RS code with 8-bit symbols should be used instead, with all the bits from a

given DRAM chip’s output contributing to the same symbol. When ×4 chips are used, data from 2 bursts

of each chip compose an 8-bit symbol. Note that the AMD Opteron uses 2 ranks of ×4 chips to construct a

144-bit cyclic code [3]. The Opteron solution, with 4 parity chips, comes close to this theoretic lower bound.

However, this result also means that the Opteron solution is only practical with ×4 chips, since 2 ranks of

×8 chips would only provide 2 parity chips. Both the IBM and Opteron solutions achieve a high code rate

of 8/9. Compared to the IBM chipkill solution that needs 72 DRAM chips per transactions, the Opteron

solution needs only half. However, it still activates 36 DRAM chips per transaction, leading to poor energy

efficiency relative to SECDED schemes.

The approach of using multi-bit symbols can be applied to Multicore DIMMs to support SCCDCD-level

reliability by adding 3 chips per rank subset to achieve the minimum Hamming distance of 4. In the case of 2

subsets (S = 2) with ×4 chips, this equates to 11 chips per subset (8 for data and 3 for parity). Compared to

the conventional chipkill solutions described earlier, this worsens the code rate from 8/9 to 8/11. But only 11
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No MCDIMM

parity IBM Opteron S = 2 S = 4 S = 8
Chip width ×4 ×4 ×4 ×4 ×8 ×16 ×4 ×8 ×16 ×4 ×8
Min TX (bytes) 64 256 128 32 16 8

Chips/TX 16 72 36 11 7 5 7 5 4 5 4

Code Rate 1.0 0.89 0.89 0.73 0.58 0.4 0.58 0.4 0.25 0.4 0.25

Table 2.1: This table compares a baseline system without parity, conventional chipkill solutions [3, 27], and

several configurations of SCCDCD MCDIMMs (reliability-enhanced MCDIMM). Min TX is the minimum

memory transaction size assuming DDR3’s burst length of 8. Chips/TX is the number of DRAM chips

activated per memory transaction. The IBM chipkill solution can correct certain types of multi-chip errors

while the Opteron and MCDIMM solutions provide protection against equivalent categories of single-chip

errors.

DRAM chips are activated per transaction, instead of 36 (Opteron) or 72 (IBM), leading to substantial access

energy savings. The number of chips per transaction for several configurations of MCDIMMs is compared

with that of conventional chipkill solutions in Table 2.1. While the Opteron and IBM chipkill solutions

are only practical for ×4 chips, it is feasible to implement SCCDCD MCDIMMs across several potential

configurations ranging from 2 to 8 rank subsets and using either ×4, ×8, or ×16 chips. Each configuration

represents a compromise between code rate and energy efficiency. For example, when comparing SCCDCD

with 2 subsets of ×4 and ×8 chips, the ×4 configuration activates 11 chips per transaction while the ×8

configuration only activates 7, leading to improved energy efficiency. On the other hand, the ×4 configuration

has the code rate of 73%, while the ×8 configuration has the code rate of 58%. Another advantage of using

×4 DRAM chips for Multicore DIMMs is that a RS code with 4-bit symbols can be used, lowering the

complexity of encoding and decoding parts of the codewords [142].

Implications and Limitations of Adding Reliability to Multicore DIMMs

We can apply Equation (2.1) and (2.2) to model the power consumption of a Multicore DIMM memory

channel augmented with SCCDCD reliability. Here D is the number of DRAM chips activated to provide

both data and parity bits, and R is the number of ranks that operate independently within a channel. For

example, R = 1 on a memory channel with 2 ranks employing the chipkill protection scheme in the AMD

Opteron since all 36 chips in both ranks operate in unison. When the total memory capacity excluding

parity bits of a system stays constant, implementing SCCDCD-level reliability increases D, decreases R, and

increases ERW due to parity overhead. Dynamic power plays a bigger role in the memory system power due

to these changes.

Practical implementations of the high-reliability techniques discussed in this section need to take into

account issues of form-factor, module compatibility, and memory channel wire-count into consideration. For

instance, while it is easy to imagine a single physical module specification that could be shared between

modules with 2, 4, or 8 rank subsets, SCCDCD protection presumes a distinct datapath width and part count

between different numbers of rank subsets. First, we observe that module slots already have pins dedicated to
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Figure 2.7: System architecture assumed for evaluation of rank-subsetting. A processor consists of 16

in-order cores, 4 threads per core, 16 L1I and L1D caches, 4 L2 caches, 4 memory channels (MCs), and

4 directories (Dirs). From one rank to four ranks (i.e., two dual-rank DIMMs) are connected per memory

channel.

ECC even though many systems use DIMMs that do not have ECC chips. Similarly, we expect that module

standards for DIMMs which incorporate rank-subsetting would include some number of pins for ECC chips.

Second, like the Opteron SCCDCD solution, the implementation of SCCDCD MCDIMMs need not match

the theoretic upper bound for code rate. For example, on an SCCDCD MCDIMM with 2 rank subsets and

using ×4 or ×8 chips, SCCDCD reliability could be achieved by spreading codewords across both rank

subsets. While counterproductive towards the goal of minimizing overfetch, this solution is still far more

energy efficient than the conventional SCCDCD alternatives, and could reduce transfer times.

2.2 Experimental Setup

To evaluate the impact of rank subsetting in the context of performance, energy-efficiency, and reliability, we

model a Niagara-like system [81] (Figure 2.7) with multiple cores and memory channels. A processor has

16 in-order cores and 4 threads per core, for a total of 64 concurrent threads. The cores run at 2GHz and

process up to 1 instruction and 1 memory access per cycle. Each core has its own separate L1 instruction and

data cache, while there is an L2 cache shared by each cluster of 4 cores. L2 caches are not shared between

clusters. All caches have 64B cache lines. There is a crossbar between the 4 L2 caches and 4 memory

controllers. A hierarchical MESI protocol is used for cache coherency and a reverse directory, similar to what

was implemented in the Niagara processor, is associated with each memory controller. A memory controller

is connected to from 1 to 4 ranks and there are either 1, 2, 4, or 8 rank subsets per memory rank (S). When

S = 1, cache line transfer time in a data bus is 4ns or 8 cycles. As S doubles, cache line transfer time
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Cache Directory DRAM chip

L1 I L1 D L2 ×4 ×8

Capacity 16KB×16 32KB×16 1MB×4 ×4 4Gb 8Gb

Associativity 4 4 8 32 N/A N/A

Access time 1 cycle 2 cycles 4 cycles 4 cycles 93 cycles 95 cycles

Cycle time 1 cycle 1 cycle 2 cycles 2 cycles 55 cycles 59 cycles

Dynamic read energy 0091nJ 0.095nJ 0.183nJ 0.021nJ 1.32nJ 1.52nJ

Static power 4.8mW 8.9mW 185mW 86.5mW 75.6mW 104.8mW

Table 2.2: Power and performance parameters of the memory hierarchy used in this chapter. On DRAM

chips, dynamic read energy includes precharge and activation energy assuming random access sequences.

All caches use 64-byte blocks.

doubles as well. The controller has 32-entry scheduling buffers (or windows) and employs the Parallelism-

Aware Batch Scheduling algorithm [115], where the requests in the current batch or group have the highest

priority, requests that can be served by single column-level commands are prioritized within a batch, and an

older request is served earlier than a younger one when both have the same priority. An XOR-based [39]

interleaving scheme is used to map memory addresses across memory controllers, ranks, and rank subsets

pseudo-randomly in rank-subset page granularity. (A rank-subset page is the product of the number of DRAM

devices per subset and the number of columns in a DRAM bank.)

A 32nm process technology based on ITRS projections is assumed for both processor and memory chips.

We use CACTI 5.3 [154] to compute access time, cycle time, dynamic energy, and static power of uncore

parts such as caches, directories, and DRAM chips, as summarized in Table 2.2. To compute the power of

processor cores, we use McPAT [89], whose technology modeling is built on CACTI 5.3’s technology model.

DDR3 DRAM chips are assumed for the main memory, with a prefetch size of 8, a row size of 16,384 bits, 8

banks per chip, and 2Gbps data pin bandwidth. The product of prefetch size and data-path size is the smallest

possible number of bits accessed when a row is read or written. The energy dissipated by a data bus of a

memory channel is calculated as the DC power of the output driver and termination resistance specified in the

DDR3 standard [108] after scaling the operating voltage from 1.5V to 1.0V in order to account for a 32nm

process. As more ranks are attached per memory channel, more energy is dissipated per data transaction.

The energy consumption of the address and command bus is calculated by computing the capacitance of

driver, wire, and load [43]. A memory controller puts a DRAM in a low-power state (similar to the precharge

power-down mode in DDR3) when all banks in it are at the precharge state. We assume that a DRAM chip in

a low-power state consumes 20% of normal static power and needs two cycles to enter and exit the state [107].

We developed a multi-core simulation infrastructure in which a timing simulator and a functional sim-

ulator are decoupled in a way similar to GEMS [100, 147]. A user-level thread library [126], which was

developed as a Pin [95] (version 2.4) binary instrumentation tool, is augmented to support additional pthread

library APIs, such as pthread barriers, and used as a functional simulator to run multi-threaded ap-

plications. An event-driven timing simulator, which models in-order cores, caches, directories, and memory
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SPLASH-2

Application Dataset L2 MPKI

Barnes 16K particles 0.3

Cholesky tk17.O 3.0

FFT 1024K points 5.1

FMM 16K particles 0.6

LU 512×512 matrix 0.4

Ocean 258×258 grids 7.3

Radiosity room 0.3

Radix 8M integers 18.6

Raytrace car 1.7

Volrend head 0.7

Water-Sp 512 molecules 0.1

SPEC CPU2006

Set Applications L2 MPKI

CFP

high 433.milc, 450.soplex, 459.GemsFDTD, 470.lbm 21.9

med 410.bwaves, 434.zeusmp, 437.leslie3d, 481.wrf 9.9

low 436.cactusADM, 447.dealII, 454.calculix, 482.sphinx3 7.3

CINT

high 429.mcf, 462.libquantum, 471.omnetpp, 473.astar 18.9

med 403.gcc, 445.gobmk, 464.h264ref, 483.xalancbmk 4.6

low 400.perlbench, 401.bzip2, 456.hmmer, 458.sjeng 3.7

Table 2.3: SPLASH-2 datasets and SPEC 2006 application mixes are listed with misses per kilo-instruction

(MPKI) in the L2 cache.

channels, controls the flow of program execution in the functional simulator and effectively operates as a

thread scheduler.

We perform experiments with the SPLASH-2 [169], PARSEC [12], and SPEC CPU2006 [102] bench-

mark suites. For multi-threaded workloads, 64 threads are spawned per workload and each thread is mapped

to a hardware thread statically. All 11 SPLASH-2 applications are used while only 6 PARSEC applications

(canneal, streamcluster, blackscholes, facesim, fluidanimate, and swaptions) are used due to a Pin limitation.

Currently, the functional simulator (Pin) doesn’t run the other PARSEC applications due to its limited sup-

port for vector operations and library-embedded pthread API calls. PARSEC applications are executed with

the simlarge dataset while our SPLASH-2 inputs are summarized in Table 2.3. To model multiprogrammed

workloads, we consolidate applications from SPEC CPU2006. The SPEC CPU2006 benchmark suite has

single threaded applications consisting of integer (CINT) and floating-point (CFP) benchmarks. We made

3 groups each of integer and floating-point benchmarks, 4 applications per group, based on their L2 cache

miss ratio [56], which are listed in Table 2.3. It also shows the number of L2 misses per instruction, which

is measured by using the baseline configuration in Section 2.3.2. Simpoint 3.0 [148] is used to find several
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simulation phases (100 million instructions per phase) and weights. For each CINT and CFP set, 16 simula-

tion phases per application are consolidated so that each hardware thread executes a simulation phase. The

number of instances per phase of each SPEC 2006 benchmark is proportional to its weight. We simulate each

workload until the end or up to 2 billion instructions. We skip initialization phases of the SPLASH-2 and

PARSEC benchmark suites. gcc 4.2 is used to compile all the benchmark programs.

2.3 Results

We evaluate the impact of rank subsetting on memory power, processor performance, and system energy-

delay product using the configurations described in the previous section. In particular, we focus on un-

derstanding the interplay between subsetting DRAM ranks and utilizing DRAM power-down modes as the

capacity and the reliability level of the memory systems are varied.

2.3.1 Impact of the Number of Ranks on the Frequency of Row-Buffer Conflicts

The parallelism-aware batching scheduling algorithm [115] we chose for memory access scheduling does

not specify when to precharge a DRAM bank. Rixner et al. [136] evaluated two policies called closed and

open with regard to the precharge timing that showed noticeable differences on media applications. A closed-

policy controller closes a row of a DRAM bank that has no pending requests. In the open-policy, an open

row remains open until a request arrives for a different row of the same rank. There won’t be much of

performance difference between the two policies when memory controllers have enough pending requests so

that there exist multiple requests to most of DRAM banks and it is not needed to speculatively open or close

rows, which is the case for [1]. However, the number of pending requests from computation cores is limited

due to various factors such as the lack of memory-level parallelism of applications, limited buffer sizes, or

core microarchitecture. For example, the microprocessor we evaluate can have up to 64 pending memory

requests since it has in-order cores with 64 concurrent threads. So unless the number of pending requests is

much more than the number of DRAM banks in the system, speculative decisions are needed on deciding the

bank precharging time and could have a noticeable influence on system performance and energy efficiency.

Figure 2.8 shows the frequencies of DRAM row-buffer conflicts (β) and the relative IPCs of 3 benchmark

suites on systems that the number of active threads or the number or ranks per memory controller is varied.

There are five configurations on each application. The two leftmost configurations have one rank per memory

controller with 4 and 16 active threads. Three remaining configurations have 64 active threads with 1, 4, and

16 ranks per memory controller. For each suite, applications which do not access main memory frequently

are not shown due to space limitations, but they are included when average values are computed. The open

policy is used to measure the frequency of row-buffer conflicts. The relative IPC of an application is the ratio

of the application IPC with the open policy over the one with the closed policy.

Average β decreases in all three cases with increasing S or fewer active threads. This is because memory

requests from the same thread on many applications have spatial locality. Requests from other threads that
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Frequency of Row-Buffer Conflicts relative IPC

Figure 2.8: Frequency of row-buffer conflicts (β) and relative IPC when the number of active threads and

ranks are varied. nthread configurations have n active threads with 1 rank per memory controller. mrank

configurations have m ranks per memory controller with 64 active threads. Relative IPC is the ratio of the IPC

with an open policy over the IPC with a closed policy on an application.

disrupt spatial locality due to a row-buffer conflict are less likely when there are more ranks. When, as in

RADIX and canneal, there is low spatial locality, this effect is slightly less. When β is close to unity, the

closed policy lowers the average access latency because the precharge delay is off the critical path. On the

contrary, the open policy is beneficial if β is low since a memory request can often be served by a single

column-level command. β is not always tightly coupled to the relative IPC though, because the difference

in memory system access latency affects the core performance only when the latency hiding techniques in

the cores (chip multithreading in our test system) cannot tolerate the cache miss latency. Since RADIX

and canneal are memory bandwidth intensive applications, the closed policy provides higher IPC. On many

applications, however, the open policy provides similar or even higher performance than the closed policy,

especially when the system has more ranks. Considering that lower β will dissipate less main-memory

power and rank subsetting will provide more DRAM banks to the system, we choose the open policy for the

remainder of the evaluation.

2.3.2 Single-Rank Performance and Power Efficiency

We first explore the optimal numbers of rank subsets that provide higher IPCs and lower system energy-delay

products when we place 1 memory rank per memory controller (R = 1). We also identify major factors

that improve the system energy-delay products. Figure 2.9 shows the performance and power result of 3

benchmark suites on a system with Multicore DIMMs where each memory controller has 1 memory rank.

There are five configurations on each application. The left-most configuration has one subset per memory

rank and does not exploit the low-power mode of DRAM chips, which is the baseline configuration. Four

remaining configurations have their memory controllers exploit the low-power mode and the number of rank

subsets are varied from 1 to 8. For each suite, applications whose performance is not sensitive to the number of

rank subsets are not shown due to space limitations, but they are included when average values are computed.

Off-chip memory demands depend on the instructions per cycle (IPC), the number of memory requests per

instructions, and the last-level cache miss rates. Figure 2.9(a) shows the IPC and the average read latency
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IPC average read latency

(a) IPC and average read latency. noPD configuration does not utilize DRAM power-down modes, and has 1 subset

per rank. nset configurations utilize DRAM power-down modes, and have n subsets per rank.
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(b) Memory power breakdown and mean fraction DRAM chips stay in a low-power mode
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(c) System power breakdown and energy×delay (lower is better)

Figure 2.9: Memory and system level power and performance on a system with 1 rank per memory channel

on 3 benchmark suites. For each suite, applications whose performance is not sensitive to the number of rank

subsets are not shown due to space limitations, but they are included when average values are computed.

while Figure 2.9(b) shows the memory power breakdown of applications. Static power is divided into refresh

and standby power, while dynamic power is divided into chip I/O power and access power within DRAM

chips performing read, write, activate, and precharge operations.
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RADIX, CFP.high, CINT.high, and canneal are applications having high main-memory bandwidth de-

mand, which consume more DRAM dynamic power than other applications. The performance of these appli-

cations, which is closely correlated with their average read latency due to their high cache miss rate, strongly

depends on the number of rank subsets per rank. Except for RADIX, the IPC increases until there are 2 or

4 subsets per rank and then decreases. As explained in Section 2.1, it is primarily due to interaction of two

factors: access latency and effective bandwidth of memory channels. RADIX, an integer sorting application,

takes advantage of higher memory bandwidth so that its performance keeps improving as S increases until

there are 8 subsets per rank. In contrast, RAYTRACE doesn’t stress the memory channel bandwidth, but it is

very sensitive to access latency, so its IPC drops as a memory rank is split into more subsets.

FFT and CFP.med are applications with medium main memory bandwidth demand. The relationship

between the IPC and the number of rank subsets is similar to that of the applications with high bandwidth

demand but with smaller variation. However, compared to other applications, the fraction of time that DRAM

chips stay in a low-power mode (which is shown in Figure 2.9(b)) substantially increases as the number of

rank subsets increases. Nevertheless, on applications with low bandwidth demand, 1 subset per rank is

already enough for the memory controller to put DRAMs in a low-power state most of the time. Conversely,

applications with high bandwidth demand rarely leave rank subsets idle, regardless of the number of subsets,

so the power-down mode is not often used.

Regardless of memory demands of the application, there are substantial savings in dynamic energy since

fewer bits are activated/precharged per memory access as the number of rank subsets increases. However,

since dynamic power is proportional to the performance (IPC) of an application, this reduction in dynamic

power is less apparent when its performance improves. Figure 2.9(c) shows the system power breakdown

and the system energy-delay product of workloads. The energy-delay product improves substantially on

applications with high main-memory bandwidth demand, on average 25.7% among four applications when

S = 4. Across the workloads, the energy-delay product is improved by 4.5%, 0.9%, and 3.8% on SPLASH-2,

SPEC CPU 2006, and the PARSEC benchmarks by utilizing a DRAM power-down mode. Rank subsetting

brings additional 8.2%, 10.6%, and 3.4% improvement when S = 4. It shows that the effectiveness of these

two techniques is complementary. The main-memory power always improves as the number of rank subsets

increases. However, the system energy-delay product degrades on most applications when S increases from 4

to 8. When memory channels are highly utilized, dynamic power is much larger than static power, and rank-

subsetting provides more improvement on system energy-delay product than DRAM power-down modes.

In summary, when each memory controller has 1 memory rank, 2 or 4 subsets per rank have higher IPC

and lower memory access latency on average compared to other configurations. As the number of subsets per

rank increases, dynamic power consumption of the memory systems decreases and DRAM chips stay in a

low-power mode more frequently. Since the memory system power is substantially lower than the processor

power, higher IPC due to rank subsetting affects EDP more than the energy-saving of utilizing a DRAM

power-down mode.
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IPC average read latency

(a) IPC and average read latency. noPD configuration does not utilize a DRAM power-down mode, and has 1 subset

per rank. nset configurations utilize a DRAM power-down mode, and have n subsets per rank.
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(b) Memory power breakdown and mean fraction DRAM chips in a low-power mode
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(c) System power breakdown and energy×delay (lower is better)

Figure 2.10: Memory and system level power and performance on a system with 4 ranks per memory channel

on 3 benchmark suites. For each suite, applications whose performance is not sensitive to the number of rank

subsets are not shown due to space limitations, but they are included when average values are computed.

2.3.3 Four-Rank Performance and Power Efficiency

When more ranks are attached per memory channel so that the main-memory capacity increases, the rela-

tionship between application performance, memory power, and system energy-delay product changes in a

way that it becomes more important to exploit DRAM power-down modes to achieve better EDP. Figure 2.10

shows the power and performance of the 3 benchmarks on a system with 2 dual-rank DIMMs per channel
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(R = 4). The increase in the IPC from 1 to 2 rank subsets on applications with high memory bandwidth de-

mand is not as much as in the previous system configuration. As analyzed in Section 2.1, with 4 times more

independent DRAM banks per channel, the activate-to-activate time constraint becomes a smaller problem

as a memory controller can issue commands to other ranks, leading to high performance even without rank

subsetting. Still, 2 rank subsets perform better than 1, since the timing constraints on each switch of bus

ownership limit performance, and this is alleviated with multiple subsets as each DRAM transaction takes

longer.

With 4 ranks per channel, static memory power (such as standby and refresh power) and I/O power in-

crease substantially, becoming a significant part of the total memory power as shown in Figure 2.10(b). Since

the peak bandwidth per channel is the same as with 1 rank per channel, banks are idle more often, hence it

is more likely that the memory controller can exploit low-power modes. I/O power increases since there are

more termination resistors per data bus, and sometimes I/O power even surpasses the access power within

DRAM chips, highlighting the need for more energy-efficient technologies, such as differential signaling or

point-to-point connections. The total memory power becomes comparable to the processor power on appli-

cations with high memory demand (Figure 2.10(c)). However, since the performance of these applications

varies less than in the single rank case as the number of rank subsets changes less than before, the energy-

delay product improves less as multiple subsets are used: 3.8% on SPLASH-2 with 4, 12.3% on SPEC CPU

2006 with 4, and 1.8% on PARSEC with 2 rank subsets all compared to the configuration utilizing a low-

power mode but no rank subsetting. Rather, there are bigger savings by utilizing DRAM low-power modes

even without rank subsetting: 16.1% and 13.6% on SPLASH-2 and PARSEC. The SPEC CPU 2006 bench-

marks access main memory more often than others, so a 6.9% improvement in energy-delay product from

putting DRAMs in a low-power mode is less than the additional improvement due to the rank subsets.

As the number of ranks per memory controller increases from 1 to 4, the number of DRAM banks in the

memory system quadruples as well, becoming 128 and surpassing the number of concurrent threads (64) of

the CPU. Additional increase in the number of DRAM banks by rank subsetting helps less on improving the

IPC. Rather, serialization in cache line transfers due to rank subsetting lowers the IPC when S = 4 or 8. As

a result, utilizing a DRAM power-down mode provides more impact on EDP compared to rank subsetting

in general. Still, the applications with high memory bandwidth demands exploit rank subsetting effectively.

The difference in EDP by the choice of specific rank subsetting implementation decreases as more ranks are

deployed.

2.3.4 Power and Performance of Chipkill-level Reliability

Both rank subsetting and the exploitation of DRAM low-power modes improve the energy-delay products

of systems with chipkill-level reliability, because supporting chipkill increases the number of DRAM chips

involved per memory access while providing the same memory capacity. Figure 2.11 shows the performance

and energy efficiency of 4 different memory systems supporting chipkill level reliability. On each application,

the first two columns (noPD and 36x4) have the values for a conventional chipkill solution, in which each
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(b) Memory power breakdown and mean fraction DRAM chips in a low-power mode
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(c) System power breakdown and energy×delay (lower is better)

Figure 2.11: Power and performance of applications on systems with chipkill-level reliability. There are four

configurations per application: both noPD and 36x4 for the conventional system with 36 ×4 4Gb DRAM

chips per rank while power-down modes are applied only to 36x4, 11x4 with 11 ×4 4Gb DRAM chips per

MCDIMM rank, and 7x8 with 7 ×8 8Gb DRAM chips per MCDIMM rank.

rank consists of 36 ×4 4Gb DRAM chips (32 chips for data and 4 for parity and other information). The

first column does not utilize the DRAM low-power mode while the second column does. Since each DRAM

chip has a prefetch length of 8, a minimum transfer size 36 × 8 × 4 = 1152bits of data should be read or

written. The cache line size of the system is 72B = 576bits including ECC in internal caches, so half of the

data are not used. Although burst chopping [107] can be used to save I/O power by not transferring unused
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data, substantial DRAM dynamic energy is still wasted. In the second memory system, denoted 11x4, each

Multicore DIMM rank consists of 2 subsets, each with 11 ×4 4Gb DRAM chips. As a result, 2/9 = 22.2%

more DRAM chips are used for error correction over a system that only provides parity or ECC. On the other

hand, only 11 chips are used per memory access, less than 1/3 of DRAM chips compared to the conventional

chipkill DIMMs. The third system, denoted 7x8, has 2 Multicore DIMM VMDs (subsets) per rank, each

with 7 ×8 8Gb DRAM chips. Three more DRAM chips are used for error correction, but it needs fewer than

1/5th as many DRAM chips per access compared to 36x4. All configurations have the same data capacity.

The 36x4 configurations have 2 ranks per channel, and the last two have 4 ranks (two dual-rank DIMMs)

per channel and 2 subsets per rank.

In traditional chipkill systems, memory power can surpass the processor power, amplifying the impor-

tance of improving energy efficiency of processor-memory interfaces. The 36x4 configurations clearly per-

forms worse than others since its effective per-rank bandwidth is lower while 11x4 and 7x8 obtain benefits

from having multiple rank subsets — more banks and less frequent timing constraint conflicts, as shown

in Section 2.3.3. There are major savings in DRAM dynamic power on configurations with high-reliability

MCDIMMs (Figure 2.11(b)) since far fewer DRAM chips are used per access. This also helps memory con-

trollers to idle subsets so that the static power of MCDIMMs can be even lower than conventional chipkill

DIMMs unless the whole memory system is largely idle like on RAYTRACE and streamcl. This is true

even though systems with high-reliability MCDIMMs have more DRAM chips than 36x4. Therefore both

subsetting DRAM ranks and exploiting DRAM low-power modes are equally important to enhancing energy-

delay product. By utilizing DRAM low-power modes, system energy delay product on 36x4 is improved by

16.3%. Rank-subsetting leads to additional improvement on system energy delay product: 12.0% and 13.1%

on 11x4 and 7x8 compared to the 36x4 with a low-power mode utilized.

2.4 Related Work

A large body of computer architecture research aims to improve the performance, energy efficiency, and

reliability of main-memory systems. One key idea is to group together memory accesses with the same

access type and similar addresses by reordering, in order to minimize the performance degradation due to

various timing constraints on DRAM accesses. There have been proposals to exploit these characteristics to

achieve higher performance on vector [101], stream [136], and single-core and multicore processors [114,

119]. Higher performance typically leads to higher energy efficiency by reducing execution time and saving

static power. We use one of the latest proposals, Parallelism-Aware Batch Scheduling [115], in our evaluation.

Multiple power states were introduced in Rambus DRAM (RDRAM).Some studies try to exploit these

low power states in RDRAMs by allocating and migrating OS pages in order to put DRAM chips into a low

power state for longer periods [62, 86]. Modern DDRx DRAM chips also have multiple low power states.

Hur et al. suggest ways to exploit them in a memory scheduler [64]. These are complementary to our idea of

saving dynamic energy per memory access, which can also be synergistic as shown in Section 2.3. Ghosh and
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Lee suggest a memory controller design with smart refresh [43] to save refresh power. This is complementary

to our idea as well.

Among the proposals advocating rank subsetting, module threading [166] relies on high speed signaling.

The memory controller outputs separate chip select signals for selecting a subset of devices. Zheng et al.

called a subset a mini-rank [182] and proposed a design in which all mini-ranks in a memory rank send

and receive data to/from a memory controller through a mini-rank buffer. They did not consider processor

power and reliability in their evaluation of their architecture. The key difference between Multicore DIMM

and mini-rank is the placement of the data mux and address/command demux. Mini-rank has a demux per

memory rank while Multicore DIMM has one per memory channel. As a result, mini-rank is more costly in

energy and component count. Multicore DIMM has one address/command demux per memory rank, while

mini-rank does not have any. Since address and command signals must be registered per rank due to signal

integrity issues, the incremental cost of the demux register is minimal. Both proposals need chip select signals

per rank subset.

There are recent proposals to improve the efficiency of main-memory systems either by reducing OS page

sizes [153] or by modifying the internal microarchitecture of DRAM chips [161]. Sudan et al. [153] suggested

to collocate cache blocks that are frequently utilized into the same row of the DRAM bank by reducing OS

page sizes and providing hardware/software mechanisms for data migration within main memory in order to

reduce DRAM row-buffer conflicts. Udipi et al. [161] proposed changes to the DRAM microarchitecture to

alleviate the overfetch problem while sacrificing area efficiency. Their techniques either delay DRAM row

activation until both row-level and column-level commands reach the DRAM chip in order to activate DRAM

cells that only correspond to the cache line to be accessed, broaden the internal DRAM data path so that an

entire cache line can be fetched from a small portion of a bank in a DRAM chip, or provide a checksum

logic per cache line to provide RAID-style fault tolerance. Rank subsetting does not require changes to OS

or DRAM chip microarchitecture and can be supplementary to these techniques.

2.5 Conclusion

Memory power is becoming an increasingly significant portion of system power. In this chapter, we holis-

tically assessed the effectiveness of rank subsetting on the performance, energy efficiency, and reliability at

the system level rather than only looking at the impact on individual components. We also quantified the

interactions between DRAM power-down modes and rank subsetting. For single-rank and four-rank memory

systems, across the SPLASH-2, SPEC CPU 2006, and PARSEC benchmarks, we found that power-down

modes without rank subsetting could save an average of 3.5% and 13.1% in system energy-delay product.

When rank subsetting is added, additional average savings of 7.7% and 6.6% are obtained. In a typical high-

throughput server configuration with 4 ranks per memory controller and 4 memory controllers in a system,

dividing a memory rank into four subsets and applying DRAM low-power modes provides 22.3% saving in

memory dynamic power, 62.0% in memory static power, and 17.8% improvement in system energy-delay
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product with largely unchanged IPC (instructions per cycle) on tested applications. The cost of rank subset-

ting is very low: for example, in the Multicore DIMM approach, a latch on each DIMM is converted to a

demux latch. Thus, given the insignificant investment required, these system energy-delay product savings

are remarkably high.

Rank subsetting increases the amount of data read out of a single chip, so it also can increase the probabil-

ity of a large number of bit errors when an entire chip fails. Therefore, we extended the MCDIMM design for

high-reliability systems. Enhancing reliability involves a tradeoff between energy and code rate. Traditional

chipkill solutions optimize code rate at the cost of reduced energy efficiency. A Multicore DIMM-based

high-reliability memory system uses 42.8% less dynamic memory power, and provides a 12.0% better sys-

tem energy-delay product compared with a conventional chipkill system of the same data capacity, but needs

22.2% more DRAM devices. Given the substantial portion of datacenter TCO related to power provisioning

and energy consumption, solutions which strike a balance between code rate and energy efficiency make

more sense.

Overall, we expect rank subsetting, especially reliability-enhanced Multicore DIMM, to be a compelling

alternative to existing processor-memory interfaces for future DDR systems due to their superior energy

efficiency, tolerance for DRAM timing constraints, similar or better system performance, and ability to pro-

vide high reliability. Moreover, as DRAM semiconductor processes scale more slowly than logic processes,

memory power will grow as a share of overall power consumption. Thus, the need for techniques like rank

subsetting will only increase over time.



Chapter 3

Per-Core Power Gating for Datacenters

Orthogonal to dynamic power consumption, static power consumption is a large component of overall server

power consumption, and the processor is a large contributor to this. Dynamic Voltage and Frequency Scal-

ing (DVFS) and deep sleep states represent the state of the art in power management for processor chips.

Nevertheless, they are likely to suffer from limitations in the future. With continued semiconductor scaling,

the dynamic range of DVFS is going to be limited and ineffective at addressing the increasing fraction of

leakage power dissipation. Moreover, modern workloads exhibit highly variable resource usage, frequently

operating at CPU utilizations ranging from 10% to 80%. Current deep sleep states do not allow a reduction

in the leakage power of underutilized resources without forcing the whole chip into an idle mode.

To address these challenges, this chapter proposes and evaluates per-core power gating (PCPG) as an

additional power management solution for multi-core processors. PCPG enables the elimination of leakage

power in underutilized cores, while the rest of the system (other cores and shared caches) offer the resources

necessary to handle moderate or low performance requirements. We present two practical implementations

for power gates using on-chip and package-level sleep transistors, as well as the hardware and software in-

frastructure necessary to manage per-core power gating. Using a test bed based on a commercial 4-core chip

and a set of real-world application traces from enterprise environments with varying processor utilization, we

have evaluated the potential of PCPG for power and energy savings. We show that PCPG can significantly re-

duce CPU energy consumption (up to 40%) without significant performance overheads. We also demonstrate

that PCPG works well with dynamic voltage-frequency scaling techniques and that the combination provides

a holistic approach to address both dynamic and leakage power in multi-core chips.

The work presented in this chapter was originally submitted to the 15th International Symposium on

High-Performance Computer Architecture on August 17, 2008. Three days later on August 20, 2008, Intel

announced at the Intel Developers Forum its new “Nehalem” architecture [150], which included the first

implementation of per-core power gating for general-purpose processors. Understandably, the response to our

paper was mixed during peer-review months later, ranging from “very timely... detailed analysis” (Accept) to

“has already been adopted by industry” (Strong Reject). The HPCA submission was ultimately rejected, but
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an abbreviated version of the manuscript was eventually accepted to Computer Architecture Letters [87] and

published in 2009.

In this chapter, we present the original, full description and evaluation of our work on per-core power

gating for datacenter workloads. In Section 3.7.1, we compare commercial examples of per-core power

gating to our own design, and offer new critique of the Nehalem implementation.

3.1 Introduction

Dynamic Voltage and Frequency Scaling (DVFS) is one of the most successful power management mech-

anisms provided by modern processors. DVFS has been extensively used to fight the dynamic component

of CPU power consumption [37, 67, 123, 131, 132]. However, the increasing contribution of leakage to to-

tal power consumption as semiconductor technology scales and the pervasive use of multi-core chips for all

types of workloads provide an opportunity for additional innovation in processor power management.

The efficacy of DVFS is limited by its dynamic range, ultimately fixed by the minimum voltage necessary

to operate the transistors and the maximum voltage that can be thermally tolerated. For instance, the voltage

range for DVFS for a 65nm Intel Core 2 Duo processor is 0.75V-1.35V. The range is constrained by several

characteristics of the manufacturing process, like the threshold voltage (Vth) and noise margins, that are not

likely to scale significantly in the future [28]. Consequently, the relatively high voltage of the minimum

DVFS state limits the effectiveness of this technique in reducing leakage power [85].

Voltage scaling is also less applicable to multi-core environments running heterogeneous workloads.

Since there is typically a common voltage plane shared across all cores, a lower supply voltage cannot be

employed unless all cores are simultaneously ready to use it. Alternatively, multiple voltage planes can

be implemented at additional cost and design complexity. Thus, any heterogeneity in the characteristics of

disparate workloads consolidated onto a multi-core chip forces a compromise in either performance, power

consumption, or cost. More importantly, prior study of per-core DVFS mechanisms have focused primarily

on minimizing energy consumption for workloads that utilize every core in the system [68, 79, 88]. Hence,

they place particular emphasis on dynamic power consumption at peak utilization. However, many deploy-

ments of multi-core chips exhibit only moderate utilization. For example, Barroso observes that processors

in data centers operate mostly within a utilization range of 10% to 50% [10]. Likewise, end-user (client) sys-

tems often remain mostly idle, perhaps waiting for the user to click on the next web link. This trend suggests

that the contribution of leakage power to the overall energy consumption will increase.

These issues motivate research on power management techniques that enable real differentiation in the

power consumption of individual cores and very low-power modes. Power gating is a technique that allows

one to shut off—i.e. gate—the power supply of a logic block by inserting a gate (or sleep transistor) in series

with the power supply. Gating the power supply results in virtually no power consumption in the gated block.

This technique can thus radically reduce a core’s power consumption, providing a very effective per-core

deep sleep state. In this chapter, we specifically make the case for per-core power gating (PCPG).
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Figure 3.1: Per-Core Power Gating (PCPG) in relation to DVFS and global deep-sleep states. PCPG targets

moderate to low activity workloads and addresses static power savings. It also has full per-core granularity

as opposed to DVFS (limited core granularity) and global deep sleep states (chip-level granularity)

Per-core power gating compliments existing voltage scaling techniques by providing an effective mech-

anism to reduce leakage power in a multi-core system when it operates at moderate utilization or when the

aggregate workload exhibits high variability in resource usage. Figure 3.1 illustrates the relationship of PCPG

to voltage scaling techniques. DVFS reduces dynamic power at high levels of utilization, while global sleep

states can deal with extremely low-activity operation modes. PCPG, on the other hand, efficiently deals with

moderate-activity workloads, aggressively reducing the leakage power at the expense of limited performance

loss. Being an orthogonal technique, PCPG can be used in conjunction with these other power management

solutions (such as DVFS) in the same processor.

This work makes the following contributions. We present a per-core power gating architecture for multi-

core processors. The power gates are practical to implement in a cost-effective manner using on-chip sleep

transistors or die-stacking technology. The gated cores consume negligible leakage power while the remain-

ing system, cores and shared caches, provide full functionality. A power control architecture allows software

to turn on and off individual cores using PCPG, as utilization and quality-of-service requirements vary. We

have developed example management policies that use PCPG to achieve desired power savings. These poli-

cies can be applied statically or dynamically, and can run in conjunction with DVFS policy managers. Using

a test bed based on a commercial quad-core chip and a set of real-world application traces with varying

processor utilization, we have quantified the potential of per-core power gating. We demonstrate that PCPG

leads to significant energy reduction (up to 40%) and power savings (up to 20%) without significant impact

on performance. Moreover, we show that combining PCPG and DVFS leads to additional advantages (up to

59% energy savings and 26% power reduction) by providing a holistic approach to address both dynamic and

leakage power in multi-core chips.

The remainder of this chapter is organized as follows. Section 3.2 presents background on DVFS and deep

sleep states on modern processor. Section 3.3 discusses the architectural implications of PCPG and discuss

the circuit model that we used to model PCPG. Section 3.4 discusses static and dynamic policies for PCPG.
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Section 3.5 discusses our methodology and Section 3.6 presents our experimental evaluation. Section 3.7

discusses related work and Section 3.8 concludes the chapter.

3.2 Background on Power Management Techniques

The power consumption of a chip can be optimized at design time using circuit techniques, such as gate sizing,

transistors with alternative thresholds, or architectural techniques such as simplified pipelines or drowsy

caches [48,117]. At runtime, power consumption can be managed using techniques such as clock gating and

voltage scaling.

3.2.1 Voltage Scaling

Contemporary systems use an off-chip voltage regulator module (VRM) to provide the voltage levels needed

for the performance (P) and sleep (C) states of the ACPI standard [59]. The P states correspond to DVFS

levels and are directly controlled by the processor using the voltage identification (VID) pins [66].

As a first approximation, processor dynamic power consumption is given by the equation:

Pdynamic = CfV 2 (3.1)

where C is switching capacitance (assumed to be constant), f is frequency, and V is voltage. The performance

relationship between frequency and voltage is largely linear [65]. DVFS can optimize power and energy

efficiency by two means: by sacrificing performance to exploit the quadratic relationship between voltage and

dynamic power consumption, or by observing that memory-bound workloads are not significantly slowed by

lowering the processor’s clock rate. For instance, a notebook system may use the lowest voltage/frequency

setting when running on battery in order to minimize power consumption. Intentions aside, care must be taken

when attempting to minimize energy consumption (and thus maximize battery life) with DVFS. When in a

low P state, the integration of power consumption (especially considering full system power consumption)

over the longer duration of a workload can result in a net increase in energy consumption. Therefore, statically

assigning a system to its lowest P state is usually best only if it is known that the system will remain mostly

idle (as notebooks often are). In other scenarios, it is best to dynamically monitor processor utilization and

adaptively switch between P states [46,58,63,94,174].The OS or a hypervisor requests the P states that meets

the current performance requirements and power constraints given some control algorithm.

3.2.2 C-states

C-states target power reduction during long idle periods with no useful code being executed. Some chips

implement a few C states without involving the VRM, instead using aggressive clock gating or by disabling

clock generation. Deep sleep C states that aggressively reduce voltage to mitigate leakage involve an external
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Advantages Disadvantages

Global deep sleep states Easy to implement, no impact Whole chip granularity, driven by

on the chip’s power network external bulky VRM

Per-core power planes Limited impact on power network Driven by external bulky VRM,

no decoupling capacitor sharing

Per-core switching regulators Core granularity, fast DVFS Large on-chip area, bulky passive elements

Per-core voltage regulators No external inductors Limited efficiency

PCPG Core-granularity, deep sleep states No per-core DVFS

Table 3.1: Comparison of the main alternatives to per-core power gating.

entity, such as the Southbridge or a platform-specific microcontroller, to control the VRM. This entity coor-

dinates the powering down of the processor’s VRM with the powering down of other system components,

and monitors for wake-up events. In general, deep sleep states lead to maximum power savings when the

voltage level supplied by the VRM is well below the threshold voltage of the chip or is entirely off. As a

consequence, the processor may lose most or all of its volatile state (register contents, modified cache lines,

etc.), so the transition to and from a deep sleep state must be carefully coordinated with the operating system,

whose job it is to transfer and restore volatile state to and from main memory or disk.

Almost all modern processors provide whole chip deep sleep states. All cores in a multi-core with a

shared voltage domain must reach the lowest C state before the voltage can be reduced, to ensure that the

voltage is not reduced prematurely [67, 123].

3.2.3 Multiple Voltage Domains

The evolutionary approach to power management for multi-core chips would be to provide per-core voltage

domains and implement DVFS and deep sleep states. After all, many chips already have multiple power

planes that enable distinct power management of resources like cores, shared caches, I/O interfaces, and

analog sections [116,139]. Following this approach, the AMD’s Griffin mobile platform has separate voltage

domains in order to enable per-core DVFS [123]. Nevertheless, Griffin still implements deep sleep states

for the whole chip, not per-core. In general, separate voltage domains introduce several design issues. They

require more supply voltages from the external VRM(s), which will increase its complexity. Also, within

the chip, having separate voltage domains prevents the sharing of decoupling capacitance between separate

domains, which makes the power supply noisier. For this reason, the power network for the Power6 chip uses

a single voltage plane for cores and caches [70].

Kim et al. have proposed the use of on-chip per-core switching voltage regulators [79]. This solution

enables very fast voltage transitions among P-states (DVFS). On the other hand, due to area efficiency and

thermal constraints, on-chip switching regulators can only provide limited voltage variations, making them

less suitable for per-core deep sleep states. They also require external inductors and thus pose challenging

layout, packaging, and overhead issues [90]. Linear on-chip regulators that do not require passive elements

have also been demonstrated [54]. Nevertheless, their efficiency dramatically drops for high step-down ratios,

limiting their useful voltage range [79]. Their efficiency is limited by the Vout/Vin ratio, which is 58% when
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converting from 1.3V to 0.75V. Typical switching regulators operate at 80% efficiency.

3.2.4 Motivation for our work

Existing power management methodologies have been based upon the external VRM to provide efficient

power consumption at both high utilization (DVFS) and at idle utilization (deep sleep states). However,

they do not sufficiently manage power consumption for moderately utilized multi-core chips, where a small

number of cores may be sufficient to meet performance needs. In this case, DVFS would consume static

power across all cores, while the system cannot enter a deep sleep state unless it expects all cores to be

idle for significant duration. Also, as discussed above, it is unlikely that providing separate power domains

with off-chip or on-chip regulators will be a practical solution for power management in a multi-core chip at

moderate utilization. Finally, the efficacy of DVFS altogether is in question, as voltage scaling is reaching its

limits and the dynamic range of DVFS is much lower than it has been in the past [85].

The per-core power gating technique in the following sections enables fine-grain deep sleep states within

a multi-core chip, which are necessary for power efficiency at moderate utilization. The technique is practical

and complements existing per-chip DVFS, as well as per-chip deep sleep states.

3.3 Per-Core Power Gating Architecture

This section describes the hardware components and the control mechanisms necessary to implement per-core

power gating (PCPG). For simplicity, we initially describe PCPG independent of traditional voltage scaling

(P and C states). In Section 3.4.3, we explain how PCPG can be used in conjunction with existing techniques

for voltage scaling.

3.3.1 System Architecture

Figure 3.2 presents the system components for PCPG. We focus on managing the power of cores, but the

technique is applicable to all major blocks in a multi-core chip (e.g. shared cache tiles, encrypt or protocol

offloading engines, and memory or I/O channels). Each core is associated with a power gate and the circuitry

necessary to control and drive the gate. Each power controller makes the corresponding power gate control

architecturally visible so that privileged software (firmware, hypervisor, or OS) can control the gate through

register or memory operations. The power manager implements a control algorithm that determines when

each core is power gated given measured utilization, workload characteristics, or QoS requirements.

The power controllers, the power manager, and control channels that connect them are abstractions that

can be implemented in many different ways, depending on the technology and specific system. For example,

the power interfaces may be additional states or fields encoded in the existing registers of the ACPI hardware.

The power manager may be implemented as a periodic service running on a core or as a separate microcon-

troller. The control bus may be a stand-alone bus (e.g., I2C-inspired) or an existing system interconnect that



CHAPTER 3. PER-CORE POWER GATING FOR DATACENTERS 49

Control Bus

Power Gate

Power Controller

Control Bus Interface

Analog Driver

Power Controller

Control Bus Interface

Analog Driver
. . .

Control Bus Interface

Power ManagerPower Control

Plane

Power Gate

Vdd_ctrl

Vdd

Processor

Core

MWAIT
Memory Mapped I/O

Vdd

Processor

Core

MWAIT
Memory Mapped I/O

Control Bus

Power Gate

Power Controller

Control Bus Interface

Analog Driver

Power Controller

Control Bus Interface

Analog Driver
. . .

Control Bus Interface

Power ManagerPower Control

Plane

Power Gate

Vdd_ctrl

Vdd

Processor

Core

MWAIT
Memory Mapped I/O

VddVdd

Processor

Core

MWAIT
Memory Mapped I/O

Processor

Core

MWAIT
Memory Mapped I/O

VddVdd

Processor

Core

MWAIT
Memory Mapped I/O

Figure 3.2: The system architecture for PCPG.

provides access to memory-mapped registers.

A core may message its associated power controller directly through the use of a special instruction, like

MWAIT, or by writing to a memory-mapped register. The power manager may communicate with any power

controller via the control bus. The former mechanism allows each core to have the final say in its own loss of

power and ensure that the OS had ample time to prepare. The latter mechanism allows the power manager to

actuate the awakening of gated cores.

All of these PCPG control circuits should be connected to an uninterrupted power supply that is not gated

as they need to operate even when cores are power gated. For example, the PCPG circuits could use the I/O

power plane. The digital circuits associated with the power gate should be relatively small and low power,

so we expect that their presence should not significantly impact the total power consumption. We discuss the

power consumption of the power gate itself in Section 3.3.2.

3.3.2 Circuits for Per-core Power Gating

Power gates can be implemented using sleep transistors [117]. Sleep transistors are significantly simpler than

voltage regulators (used for voltage scaling) as they do not require passive elements nor active control and

have smaller area and power overhead. A voltage regulator, such as the one discussed by [79], is at least

4× bigger and exhibits twice as much power loss as a sleep transistor, even without considering the external

inductor. In this chapter, we use Spice models to characterize the process of gating a core for performance

and power. Figure 3.3(a) illustrates the basic circuit we assume, consisting of a NMOS transistor to gate the

Vss. We conservatively estimated the model parameters from published data [50, 79, 152] and measurements

of an AMD 4-core Phenom X4 9850, which is the processor used in our test bed. We use NMOS devices

because they are smaller than PMOS for the same channel resistance, but our results apply to PMOS devices

as well.
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Core and Package

Technology node 65nm

Area of the core 25 mm2

Imax 33 A
Vdd 1.06 – 1.35V
Ileak 4.2A (1.06V),

5.3A (1.35V)
T 333K
Ccore 50nF
Cdec int 100nF
Cdec ext 500nF
Lext 150pH

Power gate

Ron 1.8m Ω (60mV)
Ton 100ns
Toff 190ns
Eswon/Eswoff 160nJ
Pmax 59mW
Pleak 1mW

(b) Circuit-level assumptions and pa-

rameters for each core and for the target

power gate.

(c) On-package sleep transistor design. From the bottom, the stack includes: an

organic substrate to connect to the Ball Grid Array (BGA), the interposer die with

integrated power MOSFETs and through silicon vias (TSVs), the multi-core pro-

cessor die, a heat spreader, and heat sink. The top of the figure shows a detailed

cross-section of the power MOSFET, illustrating the drain, source, and gate (con-

trol) pads. The gate terminal of the MOSFET is on the bottom side (the active area

of the device), hence the gate signal must go through TSV in order to drive it from

the processor die. The orientation of the power MOSFET is as such in order to

guarantee that the body diode (shown above) is correctly back-biased.

Figure 3.3: Circuit and details of the power-gate design.

Figure 3.3(b) reports our estimates based on SPICE simulations for the switching time and the energy con-

sumption. Since we sized the sleep transistor quite aggressively to have very little resistance (1.8mΩ, target-

ing 60mV of voltage drop at 33A), switching energy and time primarily depend on the charging/discharging

process of the capacitance seen from the Virtual Vss node, i.e. the core’s capacitance and the internal decou-

pling capacitors (Cdec int). In the off→on transition, the core’s capacitance is charged by the current flowing

through the transistor channel. This transition is per se quite fast, since the transistor resistance is quite small.

Nevertheless, the actual speed must be limited to control the dI/dt voltage noise on the power supply. We

assume that the gate voltage can be driven “slowly” (10ns). In the presence of a 500nF external decoupling

capacitor (Cdec ext) per core, the voltage variation after closing the gate is within 10% of the Vdd, and the

rush current is limited to 1A. The total settling time to have a supply voltage within 1% of its nominal value

is less than 100ns. The on→off transition is slower (approximately 200ns) since the core’s capacitance is

discharged through the core’s leakage current (4.2A), which is smaller than the current that can be driven in

the sleep transistor.

The energy overhead of a transition is quite low, on the order of a hundred nanojoules. When a gate
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is off (power is gated), it introduces leakage power of roughly a milliwatt, while its active power when the

gate is on is roughly 6% of the core peak power consumption. Such low-resistance power gates do not cause

significant thermal issues. We ensure that the power density developed within a power gate is always much

lower than the power density of a core.

3.3.3 Implementation

Sleep transistors can be implemented on the processor die or on a distinct die that is stacked below the

processor chip. The two approaches have similar characteristics in terms of latency and power overheads.

They differ primarily in area, as the on-package approach does not introduce any overhead on the processor

die.

On-chip power gates can be implemented using the high-Vth transistors available in all logic processes.

The transistors are connected in parallel to form the gate. They can be laid out surrounding each core. Hattori

et al. [53] give a detailed description of how this scheme can be practically implemented in a low-power

processor. In our scenario, the transistor is much bigger, since it must sustain higher current, but we assume a

very similar circuit and layout organization. According to our estimates, derived from Predictive Technology

Models (PTM) [181] for 65-nm, the power gate occupies 7.65mm2, or 22% of the area of a modern core

including private L1 and L2 caches.

The on-package approach avoids the area overhead on the processor die by using die stacking technology

and advanced packaging solutions [80]. In this case, we can also use power MOSFET technology for the

sleep transistors [7]. Power MOSFET devices have been extensively demonstrated and are widely used for

a large variety of power electronics applications including existing off-chip power regulators [21, 96]. The

typical overall characteristics of power MOSFET devices in terms of channel resistance or current capability

are similar to those of power gates built using logic-process CMOS transistors. The advantage of power

MOSFET devices for on-package gates is their vertical nature, which simplifies the connection between the

processor die and the power gate.

Figure 3.3(c) illustrates how power MOSFETs can be stacked on the processor die within a package

enclosure, exploiting the vertical nature of these devices. The MOSFETs necessary for all power gates are

integrated on a dedicated die, a silicon interposer that also hosts through silicon vias (TSVs) needed for

other power and signal pins. A MOSFET is thus placed on the top of each core. This kind of flip-chip

solutions with a silicon interposer has been widely explored in the literature for Systems-on-Package [80].

Figure 3.3(c) shows the details of the bonding between the two dies. The drain of the power MOSFET die is

connected directly to the external Vss, while its source goes directly to the power pads on the logic die (area

pads) without the need for any vertical vias or additional wiring.
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3.3.4 Power Gating Process

Analogous to when a user pushes the ”soft” power off button on a computer, power gating is not an immediate

process. Under the control of privileged software, the core must go through a series of intermediate states to

safely enter the power gated state. The intermediate steps involve i) saving the core’s registers, ii) flushing

dirty data from its private caches to the next level of the memory hierarchy, and iii) turning off its clock tree.

To power on a core, the reverse process must be followed. To avoid significant spikes in supply voltage or

memory contention as multiple cores flush or re-warm the caches, the manager could stagger transitions if

multiple cores should be gated or turned on based on some workload change.

The latency of power gating is determined by many factors other than the physical latency of driving the

power gate. We found that the software and hardware procedures involved take much longer than the circuit

time. We measured the time that it takes to enable or disable a core in Linux as roughly 100ms. This time

accounts for all the steps needed to stop the core and prepare it to be shut off. Transitions across P states for

DVFS, for comparison, are much faster (microseconds), since the state of the processor does not need to be

saved/restored.

3.4 Management Policies for Per-Core Power Gates

Similar to chip-wide DVFS (P states), we can manage PCPG using either static or dynamic policies. Since

PCPG, like DVFS, enables a number of states that trade-off performance (number of active cores) for lower

leakage power, the control algorithms for both can also be similar. Nevertheless, the implementation of PCPG

involves saving and restoring state and must involve privileged software. DVFS, on the other hand, can be

transparent to the OS as the number of active cores and the state of the system remain unaffected during

voltage/frequency switches.

3.4.1 Static Policies

PCPG can be be used with static policies by allowing the hypervisor, operating system, or the user to statically

select the number of cores in the system that are gated off. For instance, this approach may be appropriate for

a notebook computer while on battery in order to minimize leakage power consumption. If the gated cores

were underutilized, there is no significant effect on performance. This is similar to DVFS low voltage states,

but with one important difference. While PCPG decreases the system throughput by reducing the number of

active cores, single-thread performance is unaffected as the remaining core(s) can run at full frequency.

3.4.2 Dynamic Policies

While static policies can provide good power savings, PCPG, like DVFS, performs best when controlled

dynamically. This is particularly important for workloads with high variability or systems that spend a sig-

nificant percentage of their time at low utilization [10]. There are several options in constructing a dynamic
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control scheme: the policy can be reactive to system utilization or may use predictive models [132]; the

policy may utilize profiling information or compiler feedback [170, 173]; the policy may use an objective

function that weighs performance, power, and energy in different ways; and so forth. The policy designer

must carefully take into account the latency and energy cost of power gating cores in order to reach a stable

control scheme. The overall power and energy efficiency depend primarily on whether the savings in leakage

from the gated cores outweighs any increase in execution time or in dynamic power in the remaining cores

that handle the consolidated workload of the system.

Dynamic schemes for DVFS exploit memory bound workloads in order to reduce power without compro-

mising performance. Using a lower frequency while the chip is waiting for memory to fulfill requests does

not slow down applications. Similarly, PCPG can exploit I/O bound workloads, such as database servers, in

order to reduce leakage power without compromising performance. Consolidating on to a single core mul-

tiple processes that mostly wait for I/O provides power saving without affecting system throughput. On the

other hand, consolidating cache intensive workloads on a single core can lead to increased cache interference

that increases the execution time of each application, even if the processor core is mostly idle.

In Section 3.6, we evaluate PCPG with a simple dynamic algorithm. Our scheme is reactive and uses the

CPU utilization as measured by the OS to determine the number of cores to power gate. A daemon polls

CPU utilization (/proc/stat) at the rate of 20Hz by summing the time spent not idling or waiting for I/O

requests. A simple high/low watermark scheme is used to determine whether to power gate an additional core

or re-enable one. When the average utilization increases above the mark of (active cores − 0.2) an extra

core is enabled. When the average utilization decreases below (active cores − 1.4), a core is power gated.

We always have at least one core on in order to implement the dynamic management algorithm in software.

We leave for future work the evaluation of more advanced schemes similar to those proposed for DVFS.

3.4.3 Interaction with Existing Voltage Scaling Techniques

PCPG essentially provides an additional set of fine-grain C-states that have part of the chip in deep sleep and

the rest fully functional. A power manager can progressively move between C-states with higher savings and

higher latencies in the following order: Idle, when executing the HLT (halt) instruction; Stop Clock, where

the clock tree is gated; PCPG, where the core is shut down. Once no code is available to run on the chip,

the manager can transition into package-level C-states: Deep Sleep, where the shared cache is turned off;

Package-level Soft Off, where the package is finally shut down (the external voltage regulator is powered off).

On the other hand, the efficient combination of PCPG and DVFS (P-states) is subtle. Suppose that an idle

system (lowest P-state, minimum number of cores active) is presented with a mild system load that it cannot

handle in its reduced power state. If it is to raise the P-state, static power will increase slightly and dynamic

power consumption will increase moderately. If it is to instead enable a gated core, static power will increase

moderately and dynamic power may remain unchanged. The most energy efficient choice depends on the

ranges of change to static and dynamic power. In spite of this subtlety, we choose to increase the P-state

before a core is enabled by our dynamic PCPG manager, due to the long latency of enabling a core.
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3.5 Methodology

We evaluated the performance and power impact of PCPG using a 2.5 GHz AMD Phenom X4 9850 system.

This 65nm chip has 4 cores, each with a private 512KB L2 cache, a shared 2MB L3 cache, and an on-chip

Northbridge. Our performance results are taken directly from this system, while our power results are a

hybrid of real power measurements and an estimated reduction in leakage power for when we gate cores.

3.5.1 Workloads

We use the recently released SPECpower ssj2008 benchmark [47] as well as a set of eight system utilization

traces from various systems in real-world deployments. SPECpower ssj2008 is an interesting benchmark

for this study as it is designed to impart partial load on a system, rather than peak load. It is similar to

SPECjbb2005, except it scales its average throughput (in ops/sec) from peak utilization down to idle in 10%

steps. We use this workload to reason about the ability to consolidate non-peak workloads onto fewer numbers

of cores.

Our traces are comprised of samples of CPU utilization taken once per second in a variety of commercial

settings, including highly utilized SAP servers, web servers with varied utilization, and enterprise desktop

machines. We selected 8 traces, each 120 seconds in length, to use as loads to place on our test system

through a load generator that we developed. As will become evident, publicly available load generators, such

as gamut [113], are inadequate for our study. The load generator takes the utilization samples from a trace

and assigns work to several worker threads, which alternate at the rate of 100 Hz between executing dummy

loops and sleeping. To promote fine-grained variance in the workload, the sampled utilization is used as a

probability for whether or not to sleep at each time step, so that average utilization approaches the sampled

utilization over one second time quanta. Work is distributed non-uniformly across threads, which we have

found significantly improves the load generator’s ability to replicate the power profile measured from real

workloads.

The trace generator is work conserving. Every run of a trace will execute the same number of instructions,

regardless of its variance in performance. A trace sample of x% utilization is interpreted as a finite quantity

of work (i.e. # of instructions) rather than simply a utilization to match at a given point in time. If the load

generator is unable to issue all of its work during a one-second time window, it records the left-over work as

a deficit, which it will attempt to pay-down immediately in the next time window. Each time the generator

retires a deficit, it records in a histogram the amount of time it took to retire that work. If a deficit remains

following the end of a trace run, the load generator continues to run until the entire deficit is cleared. We

validated our trace methodology by recording utilization traces of real workloads, replaying them, and then

comparing the power consumption of the real workload to the power consumption of the load generator. We

find mean error of -7 Watts and mean percent error of -3.4% for our experiments.
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3.5.2 Performance Model

To study the performance impact of gated cores, we use Linux 2.6.24’s built-in CPU “hotplug” support and

measure actual performance of the system. Originally intended for high-end server systems with hardware

support to remove and install CPU modules into servers without interruption, the hotplug support mimics

precisely the behavior necessary to model core gating. Specifically, when a core is hot-unplugged, pending

interrupts are serviced, running processes are migrated away from it, incoming interrupts are routed to other

cores, its caches are flushed, and the core enters a low-power idle state using a HALT instruction. Likewise,

when a core is hotplugged, it receives an inter-processor-interrupt directing it to an initialization vector, it

re-enables local interrupts, the kernel’s multiprocessor processor scheduler adjusts to the availability of the

new core, and resumes executing processes. With the exception of activating the circuit to switch a core’s

associated power gate, the code path executed by the kernel when hotplugging cores should closely match a

real PCPG implementation.

3.5.3 Hybrid Power Model

Our power model is a hybrid of real power measurements, a model of the power consumption of our power

gates, and estimates of leakage power for the Phenom X4 9850. Starting with the physical power measure-

ment, we incorporate the inefficiency of our power gates as well as the discrete energy cost each time they are

switched, and subtract the leakage power of any cores that are sleeping at that moment. Energy consumption

is calculated through discrete integration of our power estimates.

Measurements of CPU power consumption are made by measuring the voltage drop (Vsr) across a

0.00258Ω sense resistor placed in series with the CPU’s private +12V power rail from the computer’s power

supply. The measurements are made by a Measurement Computing PC-CARD-DAS16/16-AO 16-bit 16-

channel analog to digital converter, and are sampled at 4 Hz. Simultaneously with the voltage drop across the

sense resistors, a voltage measurement is taken of the +12V rail (V12). From these two measurements, the

power consumption on the +12V rail is calculated as P12 = Vsr/0.00258Ω× V12. This power consumption

figure includes losses introduced by the CPU’s VRM (voltage regulator module), whose efficiency we esti-

mate at 80%. Our measurements were validated by comparing our estimated CPU power consumption with

the power consumption measured at the wall socket by a Brand Electronics 1850-20 power meter.

We have estimated leakage power based on measurements of our system while at idle. Our assumption

that leakage power mostly comprises the total power consumption of the Phenom X4 9850 at idle is derived

from the results plotted in Figure 3.4, which shows power consumption of the chip at idle as cores are

individually transitioned from the 2.5 GHz P-state to the 1.25 GHz P-state (note that the Phenom X4 9850

has a private PLL for each core). The lack of substantive change in power consumption as cores switch at

half their previous frequency indicates that the chip is consuming very little dynamic power. This is likely

due to the extensive use of clock gating. On the other hand, the large drop in power consumption when the

CPU voltage driven by the shared VRM drops from 1.33V to 1.06V (since all cores are in the P1 P-state) is
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Figure 3.4: Power measurements of the system at idle as cores are transitioned individually from the P0 P-

state to P1. The points show power consumption and vertical lines show operating voltage. The other lines

indicate what frequency each core is operating at. The absence of significant change in power consumption

as cores are individually set to a lower frequency suggests that they draw very little dynamic power at idle.

consistent with the nature of leakage current.

We assume that the 4 cores, the integrated Northbridge, and the shared L3 cache are the most significant

contributors to leakage on the Phenom X4 9850. We additionally assume, based on their area similarity, that

the leakage of the Northbridge is equal to that of one of the cores. To account for the L3 cache’s leakage, we

derived leakage figures for a 2MB cache matching the characteristics of the Phenom’s cache using CACTI

5.3 [155], which came out to 2.7 Watts at the maximum P-state and 2.2 Watts at the minimum P-state.

All together, we calculate the per-core leakage in the P0 P-state as 7.13 Watts, and the leakage in the P1

P-state as 4.45 Watts. Power consumption results in Section 3.6 for PCPG configurations are post-processed

to account for the amount of leakage eliminated when cores are gated.

3.5.4 Dynamic Power Management Daemon

We implement a dynamic PCPG manager as a userspace daemon. The daemon polls processor utilization

(/proc/stat) at the rate of 20 Hz by summing the time spent not idling or waiting for I/O. This utilization

factor is averaged over a one second sliding window. The decision to enable or disable a core is based on the

simple high watermark/low watermark control algorithm discussed in Section 3.4.2. In general, the maximum

utilization possible on a system is limited by the number of active cores. This affects the rate at which our

daemon responds to sudden spikes in utilization; the daemon must first turn on a core and sample utilization

for a short period of time before it can determine that it should enable yet another core. As stated, we enable

and disable cores by using Linux 2.6.24’s CPU hotplug support. Core x can be disabled by writing “0” to

/sys/devices/system/cpu/cpux/online, and re-enabled by writing “1”.
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Figure 3.5: Actual performance vs. target performance and power consumption vs. target performance for

SPECpower ssj2008. Static PCPG settings are labeled “PCPG-x”, where x is the number of active cores.

Vertical lines correspond to intercepts between target performance and actual performance.

For comparisons with DVFS in Section 3.6, we use Linux 2.6.24’s “ondemand” DVFS governor.

3.6 Evaluation

We evaluate PCPG in two steps, first with with SPECpower ssj2008 to characterize its efficacy, and then by

replaying utilization traces to measure typical energy savings and performance impact.

3.6.1 Characterization of Per-core Power Gating

Static Per-core Power Gating

SPECpower ssj2008 allows us to explore the potential of PCPG at different levels of CPU utilization. Fig-

ure 3.5 shows performance (left) and power consumption (right) of static PCPG configurations compared

to the baseline system (no PCPG, maximum P-state). Performance is presented as a comparison between a

“performance target” that the SPECpower ssj2008 is attempting to achieve and the actual performance that

the benchmark exhibits. 100% performance was calibrated as 57,573 ops/s on the baseline system. Power is

presented as the average power consumption during the execution of each performance target.

The performance results serve as a rough validation of our performance measurement methodology. The

measurements for configurations with fewer cores plateau at lower performance levels. For example, while

PCPG-4 performs identically to the baseline, PCPG-1 (3 cores gated off) never crests over 34% performance.

At performance targets below each plateau, each PCPG configuration performs as well as those above it (i.e.

all configurations achieve 20% performance during the 20% target run). The non-linearity in performance

degradation is due to the memory intensive nature of the benchmark. For processor-intensive microbench-

marks, we observe perfect linear scaling in performance as cores are gated off.
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Figure 3.6: A trace of CPU Load and active cores when running SPECpower ssj2008 with dynamic power

gating enabled. The gating of cores by the dynamic PCPG manager due to limited utilization is clearly

evident. CPU load is presented as discrete samples and as a bezier smoothing.

The power results in Figure 3.5 characterize power consumption at different levels of load. Vertical lines

correspond to intercepts between target performance and actual performance. For example, the power mea-

surements to the left of the vertical line at 34% target performance are not significant for PCPG-1, since this

configuration cannot achieve the target performance in this region. Note that PCPG-4 consumes slightly more

power than the baseline at all performance targets due to the resistive load of the power gates. Disregarding

measurements where actual performance is less than target performance, all other PCPG configurations con-

sume less power than the baseline—between 21.1 Watts (53% reduction) and 5.0 Watts (5% reduction) fewer

at 0% and 80% performance, respectively. Overall, this experiment shows the potential power consumption

savings of PCPG, and establishes a trade-off between power savings and performance.

Dynamic Per-core Power Gating

We now evaluate the potential of PCPG with dynamic control. Figure 3.6 shows a trace of measured CPU

Load during a run of SPECpower ssj2008 (left) correlated with how many cores are active at any given time

(right). A CPU Load of 4 corresponds to 4 cores working all of the time. The variability seen in CPU Load

is a design goal of SPECpower ssj2008 [47], the observation being that realistic server workloads exhibit

burstiness and volatility, or even self-similarity [20]. As a consequence, the dynamic PCPG manager is often

toggling cores on and off during measurement runs.

Figure 3.7 presents performance and power consumption measurements for the baseline system, two

static PCPG configurations (PCPG-1 and PCPG-4) and the dynamic configuration (PCPG). With respect

to performance, the PCPG configuration performs identically to the baseline with the exception of some

slowdown at the 100% performance target. This is due to the dynamic PCPG manager slowly responding to

the sudden increase in CPU utilization at the beginning of this performance measurement. After this ramp-up

period, the PCPG manager constantly decides to keep 4 cores enabled.

The power measurements in Figure 3.7 succinctly demonstrate the design goal of per-core power gat-

ing: a smooth transition from maximum power consumption at peak performance to minimum achievable

power consumption at idle. The PCPG-1 configuration is plotted as a reference for the minimum idle power



CHAPTER 3. PER-CORE POWER GATING FOR DATACENTERS 59

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%10%20%30%40%50%60%70%80%90%100%

A
c
tu

a
l 
P

e
rf

o
rm

a
n
c
e

Performance Target

Actual Performance vs. Target Performance of SPECpower_ssj2008

Baseline
PCPG-4
PCPG-1

PCPG

 0

 20

 40

 60

 80

 100

 120

0%10%20%30%40%50%60%70%80%90%100%

P
o
w

e
r 

C
o
n
s
u
m

p
ti
o
n
 (

W
a
tt

s
)

Performance Target

Power Consumption vs. Target Performance of SPECpower_ssj2008

Baseline
PCPG-4
PCPG-1

PCPG

Figure 3.7: Actual performance vs. target performance and power consumption vs. target performance for

SPECpower ssj2008. The Dynamic PCPG configuration is labeled “PCPG”.

consumption achievable by our system. An unexpected result is that the dynamic PCPG system sometimes

achieves lower power consumption than the static PCPG-1 setting. During these measurements, the dynamic

power consumption of the system with only 1 active core was higher than any other configuration.

For further exhibition of this interesting result, Figure 3.8 presents a power consumption trace of dynamic

PCPG and PCPG-1 while running SPECpower ssj2008. At the 40% performance target (indicated by vertical

lines), it can be seen that the dynamic PCPG configuration is often dropping to idle power consumption

while the PCPG-1 configuration is pegged at full power consumption. In short, the PCPG-1 configuration

is so pressured with work that it never idles, where as the other configurations spread the same work across

multiple cores, and occasionally the idle periods of each core coincides with the others. These idle periods

allow the CPU to employ aggressive clock gating.

Combining DVFS and PCPG

We omit the presentation of a detailed characterization of SPECpower ssj2008 when DVFS and PCPG are

combined, but present quantitative results for the trace-based evaluation in the next section. In summary,

we find that the combination leads to a further drop in performance at the 100% performance target, but

otherwise matches the baseline system. In terms of power consumption, PCPG+DVFS achieves lower power

consumption at idle than PCPG alone (11.8 Watts vs. 17.8 Watts) and moderately reduced power consumption

for performance targets up to 40%.

3.6.2 Evaluation of PCPG with Realistic Utilization Traces

We now evaluate PCPG with the traces and the methodology discussed in Section 3.5. Unlike SPECpower ssj2008,

which defines synthetic performance targets, the traces allow us to look at actual processor load in real-world

scenarios.
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Figure 3.9: CPU load and power consumption as the SAP05 trace is played. Thin lines indicate instantaneous

measurements, while thicker lines show a bezier smoothing.

Figure 3.9 is a representative sample of what the duration of one of our trace runs looks like, in this case,

the SAP05 trace. The left graph shows measured CPU load of the baseline system (no PCPG), the baseline

system with DVFS, the dynamic PCPG system, and the combination of DVFS and PCPG (PCPG+DVFS).

A CPU load of 4 corresponds to 4 cores working all of the time. The right graph shows power consumption

over the trace for each configuration. Naturally, there is significant correlation between CPU load and power

consumption. Overall, each configuration exhibits uniform CPU Load, but PCPG configurations consume

less power at low utilization.

While the differences in CPU load at first glance seem insignificant, they do show interesting behavior.

Notably, the PCPG configurations tend to peak in load slightly after the non-PCPG configurations (see Fig-

ure 3.9 at 40s). These slight delays correlate to lag in the PCPG manager increasing the number of active
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Both 14.33 -21.72 -28.79 -26.29 1705 -64.73 1.20 0.00 0.00 0.0 0.0 1.7 98.3

Table 3.2: Results for a variety of utilization traces, including commercial application servers (SAP05 SAP11, SAP12, PHARMA04),

web servers (HCOM10, HCOM19, ECOM3), and a desktop machine (DESKTOP). A few positive (lighter green) and negative (darker

red) results are highlighted. The presented metrics can be divided into 4 categories: power, energy, delay, and PCPG state. For power,

we present average power consumed during the trace, the highest power consumption above and the lowest power consumption below

the baseline configuration (90th percentile), and average power difference. For energy, we present the absolute consumption in Joules

(which, since each trace runs for the same amount of time, is proportional to average power consumption), and the percent change in

energy consumption. For delay, we show the percent of total work delayed for one second, for two seconds, and for more than two

seconds. For the PCPG state, we present the percent of time spent with 4, 3, 2, or 1 core active.

cores, as it makes decisions based on 1s samples of average CPU load. The brief delay also results in a

backlog of work, during which the dynamic power consumption goes up.

Other than the aforementioned spikes in power consumption following the accumulation of a work deficit,

power consumption for the PCPG configurations stay generally at or below the power consumption of the

non-PCPG configurations. During periods of relative inactivity (load < 1), significant improvements of up to

20W are observed. These improvements result in net energy savings.

Table 3.2 shows the evaluation results for a variety of traces, including commercial application servers,

web servers, and a desktop machine. See its caption for a description of each column. As none of these

traces exhibited 100% load for their entire duration, opportunities were generally found to gate cores and

reduce power consumption. These energy consumption savings range from 3.4% for SAP12, a trace with
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Figure 3.10: Summary of the HCOM19 trace. Power, normalized energy consumption, and work delay

history are presented. Power savings are most evident following a drop in CPU load that occurs at 60s.

substantial utilization, to 64.73% for DESKTOP, a trace taken from a mostly idle desktop system. While

nominal power consumption of the PCPG configurations is well below the baseline system, there are some

anomalous measurements. For example, the High ∆ Power (the highest amount by which a configuration

overshoots the baseline system at any correlated point during the trace) for SAP05 and SAP12 show that

the PCPG configuration at some point consumes 14.7 Watts and 12.63 Watts, respectively, over the baseline.

These readings correspond to periods immediately following low throughput, where the load generator is

attempting to pay-down an accumulated work deficit.

In nearly all cases, the PCPG configurations come with some delay in work execution, ranging from

0.69% work delayed one second or more for the DESKTOP trace to 12.33% for the HCOM19 webserver

trace. The amount of this delay correlates more strongly with the maximum load during a trace rather than

the average load. For example, PHARMA04 exhibits significant work delay, yet the average load during

that trace is only 0.42. Note that these work delays do not correspond to discrete “slow-downs” or increases

in execution time. Indeed, work deficits notwithstanding, all of the traces complete in the same amount of

time. Rather, these work delays can best be described as quality-of-service (QoS) metrics, and can mainly be

used for comparison between different configurations. Nevertheless, they serve as a suitable lower-bound on

performance.

As a visual reference for the data presented in Table 3.2, Figure 3.10 shows power consumption over

time, as well as a summary of energy consumption and performance degradation of HCOM19, a trace from

a commercial webserver. For this trace, before the drop in load at 60s, there is only minimal difference in



CHAPTER 3. PER-CORE POWER GATING FOR DATACENTERS 63

power consumption between all four configurations. After the drop, significant differences can be observed

as the PCPG configurations gate cores. The PCPG configurations take advantage of this period to accrue

significant energy savings (28%). The PCPG configurations exhibit several brief losses of performance during

the beginning of the trace, but eventually reach equilibrium. This trace incurred the most severe loss of

performance that we observed (12.33% of work delayed by one second or more).

3.7 Related Work

Most of the existing work on power gating for high-end processors deals with low-leakage memory design.

The Intel Dual Core Xeon presented in [139] uses sleep transistors to implement low-power modes in the

L3 cache. Similarly, Zhang et al. present a SRAM design that employs power gating to reduce the leakage

power [178].

Tschanz et al. propose several techniques to design a low-leakage ALU, including power gating [157].

Unlike our work, they adopt a different design strategy by redesigning a basic processor block and providing

fine-grain control of the leakage. Our solution, on the other hand, permits the reuse of processor cores, leaving

unmodified their logic and layout. Power gating has been demonstrated for low-power mobile processors [53,

120]. These devices feature current densities that are order of magnitude less than high-end processors,

making sleep transistors extremely small.

Significant effort has focused on algorithms for managing P and C states. In particular, many papers have

been published on DVFS starting from initial efforts by Transmeta [37]. Some of the studies most related to

our work are as follows. Donald and Martonosi explore DVFS for dynamic thermal management in multi-

core processors [30]. Canturk et al. explore the design space of per-core DVFS, assuming that this comes at

a negligible hardware cost [68]. Li et al. [88] present a simulation study of per-core DVFS and sleep states

by leveraging an embedded microcontroller. Although the latter includes sleep states in its evaluation, it does

not analyze the many hardware/software implications of implementing per-core power gating, but assumes

it as a given technology. All these studies target high-activity workloads (SPEC and HPC benchmarks),

optimizing towards a different design point with respect to us. We evaluate PCPG in the context of variable

and low-utilization workloads.

In the context of datacenters, most research has concentrated on leveraging existing power management

hooks, like DVFS and migration, or even turning off individual servers. Fan et al. [34] explore how DVFS

can be used in the Google infrastructure. Ramos and Bianchini present a software infrastructure that uses

load redistribution and DVFS to respond thermal emergencies [132]. Raghavendra et al. introduce a global

management solution that coordinates individual power management approaches [131]. Tolia et al. [156]

suggests how ensemble-level power proportionality could be achieved by turning off servers in an ensemble.

Meisner et al. [103] focuses on idle power of servers, suggesting new architectural features to enable efficient

on/off switching of a server.

This work also differentiates from the previous studies in its experimental methodology. Similarly to us,
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but in a different context, Wu et al. evaluated their dynamic compilation-directed DVFS by performing real

measurements [170]. Lloyd and John [13] propose an experimental analysis of dynamic power management

(DVFS) for an AMD 4-core processor on desktop-oriented benchmarks.

As far as we know, our work is the first one at evaluating per-core deep sleep states and showing its

advantages for commercial applications.

3.7.1 Intel Nehalem and AMD Bobcat

Since the original manuscript describing this work was written, per-core power gating has been implemented

for high-performance, general-purpose processors and shipped by both Intel (starting with its Nehalem archi-

tecture) and AMD (most recently in its Bobcat architecture). We now draw a few comparisons with our work

and two existing implementations: Intel’s Nehalem [138, 150] and AMD’s Bobcat [83, 137]. Both expose

per-core power gating as a “C6” C-state.

First, the circuit overheads associated with PCPG are far lower in real implementations than we estimated.

AMD reports that power gates occupy only 1-3% of chip area on the Bobcat processor [137], as opposed to

the 20% we predicted assuming a generic high-Vth process. With area overhead so low, a MOSFET interposer

like we propose is not likely necessary. Kosonocky also reports that AMD sizes their power gating network

to achieve approximately 1% voltage drop [83]. Thus, the power and frequency overheads we assumed in our

study are overly pessimistic.

Policy-wise, both AMD and Intel have adopted an approach to PCPG which requires little operating

system intervention. Rather, the operating system simply requests the C6 C-state when it calls MWAIT as part

of its idle-loop, the same as was done for other low-power C-states: C1, C1E, C3, etc. A “package control

unit” (PCU) then makes the final decision regarding which C-state to enter, and takes care of saving and

restoring all architecturally-visible state [138]. The PCU can choose not to enter the C6 state if it predicts

that the core will need to wake up within a short period of time (such that the latency to exit C6 will be

significantly noticeable), or when entering and exiting C6 will consume more energy than simply staying

put. This strategy largely hides the latency of entering and exiting a power-gated state from the end-user,

and has greatly simplified the adoption of PCPG by operating system developers. Unfortunately, the PCU’s

second-guessing can mean that C6 is used far less often than it otherwise could be. For instance, Meisner et

al. find that “C6 ... does not provide significant power reduction.” [104] in their study of power-management

for Google workloads.

As a demonstration, Figure 3.11 shows how often a Nehalem-architecture core is in the C6 state when

exposed to a modest memcached workload [36]. The shocking result is that at 3% load, the core almost

never actually enters the C6 state, even though the CPU is idle (not in the C0 state) more than 80% of the

time. Memcached is a particularly antagonistic workload for Nehalem, as its requests can be handled in 10s

of microseconds; even at very low load, requests are arriving at several kHz. However, it is not far removed

from several workloads at Google, so it is not surprising that Meisner et al. found little benefit from C6.

Note that the PCPG policy presented in this chapter does not suffer from this problem. The key distinction
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Figure 3.11: Even at exceptionally low load, Nehalem rarely uses its per-core power gating capability when

serving memcached requests.

is that we actively consolidate a CMP’s workload onto a smaller number of cores, rather than reactively wait

for suitably long periods of idleness. By forcing the operating system to migrate workloads, we guarantee

that sleeping cores will be idle for a long period of time.

The one caveat is that by consolidating workloads to fewer cores, we are essentially forcing them to

timeshare more aggressively. This may introduce quality-of-service problems for some workloads that did

not exist before. We investigate in-depth the maintenance of good quality-of-service on highly utilized cores

in Chapter 5.

3.8 Conclusions

This chapter has made the case for per-core power gating (PCPG) as an effective technique to reduce leakage

power in multi-core systems. PCPG exploits the fact that most server and client systems spend significant

periods of time under moderate utilization, during which load can be aggregated on fewer cores. PCPG is

orthogonal to existing power management techniques, such as DVFS, which targets dynamic power reduction

at high utilization, and deep sleep states, which target leakage power consumption when a chip is idle.

We presented two practical alternatives to implement the sleep transistors necessary for power gating and

the hardware and software components needed to implement PCPG. Our evaluation demonstrates that, under

dynamic control, PCPG can lead to significant savings in static power and energy consumption, without

significant performance reduction, for a wide range of workloads with periods of moderate utilization. We

have also shown that PCPG is complementary to chip-wide DVFS techniques. Our results establish that

PCPG is a practical and effective technique for static power management and that there is exciting future

work on PCPG control algorithms, on techniques for combining PCPG with existing voltage scaling, and on

evaluation of detailed implementations.



Chapter 4

On the Energy (In)efficiency of Hadoop

Clusters

The previous two chapters have sought to improve server power-efficiency by proposing new hardware mech-

anisms to reduce main memory and CPU power consumption, respectively. While the previous chapter made

progress towards addressing CPU static power consumption, it did little else for the rest of the server. To

reduce the power consumption of the myriad other components of a modern server, we need a drastically

different approach. Thus, we now shift the focus of this dissertation towards server utilization, and the role

that utilization plays in determining datacenter power-efficiency.

As discussed in Section 1.4, server utilization is quite low in typical datacenters (between 6% and 12%),

and servers are power-inefficient at low utilization. A seemingly obvious question might be, “Why don’t they

just turn off the servers they aren’t using?” In this chapter, we begin to answer this question by looking at the

role that contemporary distributed processing frameworks play in it.

Distributed processing frameworks, such as Yahoo!’s Hadoop [168] and Google’s MapReduce [23], have

been successful at harnessing expansive datacenter resources for large-scale data analysis. However, their

effect on datacenter power-efficiency has not been scrutinized. Moreover, the filesystem component of these

frameworks effectively precludes scale-down of clusters deploying these frameworks (i.e. operating at re-

duced capacity). This chapter presents our work on modifying Hadoop to allow scale-down of operational

clusters. We find that running Hadoop clusters in fractional configurations can save between 9% and 50% of

energy consumption, and that there is a trade-off between performance energy consumption. We also outline

further research into the energy-efficiency of these frameworks.

66
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Figure 4.1: Opportunities for power-efficiency improvements in Hadoop workloads. Figure (a) shows that

many opportunities to utilize low-power modes for entire servers are available. Figure (b) shows that op-

portunities exist to use fractional low-power modes within servers, and perhaps also that these servers are

imbalanced for MapReduce workloads.

4.1 Introduction

A growing segment of datacenter workloads is managed with MapReduce-style frameworks, whether by

privately managed instances of Yahoo!’s Hadoop [168], by Amazon’s Elastic MapReduce1, or ubiquitously at

Google by their archetypal implementation [23]. Therefore, it is important to understand the power-efficiency

of this emerging workload.

The power-efficiency of a cluster can be improved in two ways: by matching the number of active nodes to

the current needs of the workload, placing the remaining nodes in low-power standby modes; by engineering

the compute and storage features of each node to match its workload and avoid energy waste on oversized

components. Unfortunately, MapReduce frameworks have many characteristics that complicate both options.

First, MapReduce frameworks implement a distributed data-store comprised of the disks in each node,

which enables affordable storage for multi-petabyte datasets with good performance and reliability. Associat-

ing each node with such a large amount of state renders state-of-the-art techniques that manage the number of

active nodes, such as VMWare’s VMotion [118], impractical. Even idle nodes remain powered on to ensure

data availability [10]. To illustrate the waste, Figure 4.1(a) depicts the distribution of the lengths of system

inactivity periods across a cluster during a multi-job Hadoop workload, comprised of several scans and sorts

of 32GB of data. We define inactivity as the absence of activity in all of the CPU, disk, and network. While

significant periods of inactivity are observed, the need for data availability prohibits the shutting down of idle

nodes.

1http://aws.amazon.com/elasticmapreduce/

http://aws.amazon.com/elasticmapreduce/
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Second, MapReduce frameworks are typically deployed on thousands of commodity nodes, such as low-

cost 1U servers. The node configuration is a compromise between the compute/data-storage requirements of

MapReduce, as well as the requirements of other workloads hosted on the same cluster (e.g., front-end web

serving). This implies a mismatch between the hardware and any workload, leading to energy waste on idling

components. For instance, Figure 4.1(b) shows that for an I/O limited workload, the CPU utilization is quite

low and most of the energy consumed by the CPU is wasted.

Finally, given the (un)reliability of commodity hardware, MapReduce frameworks incorporate mecha-

nisms to mitigate hardware and software failures and load imbalance [23]. Such mechanisms may negatively

impact power-efficiency.

This chapter presents a first effort towards improving the power-efficiency of MapReduce frameworks

like Hadoop. First, we argue that Hadoop has the global knowledge necessary to manage the transition of

nodes to and from low-power modes. Hence, Hadoop should be, or cooperate with, an power controller

for a cluster. Second, we show it is possible to recast the data layout and task distribution of Hadoop to

enable significant portions of a cluster to be powered down while still fully operational. We report our initial

findings pertaining to the performance and power-efficiency trade-offs of such techniques. Our results show

that energy can be conserved at the expense of performance, such that there is a trade-off between the two.

Finally, we establish a research agenda for a broad power-efficient Hadoop, detailing node architecture, data

layout, availability, reliability, scheduling, and applications.

4.2 Improving Hadoop’s Energy-Efficiency

Our first efforts focus on the impact of data layout. While this discussion is specifically targeted at Hadoop,

many of our observations apply to the Google Filesystem [42] and similar cluster filesystems [145].

4.2.1 Data Layout Overview

Hadoop’s filesystem (HDFS) spreads data across the disks of a cluster to take advantage of the aggregate

I/O, and improve the data-locality of computation [15]. While beneficial in terms of performance, this design

principle complicates power-management. With data distributed across all nodes, any node may be partici-

pating in the reading, writing, or computation of a data-block at any time. This makes it difficult to determine

when it is safe to turn a node or component (e.g. disk) off. The utility of any particular node in making

data available is opaque to both users and nodes themself, such that neither can make informed decisions

regarding whether or not it is permissible to disable a node. For instance, while at some point in time a node

may appear to be idle, it may house a data block that an application will request soon.

Tangentially, Hadoop must also handle the case of node failures, which can be frequent in large clusters.

To address this problem, it implements a data-block replication and placement strategy to mitigate the effect

of certain classes of common failures; namely, single-node failures and whole-rack failures. When data is

stored in a HDFS, the user specifies a block replication factor. A replication factor of n instructs HDFS
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Figure 4.2: Impact of block layout policy on data availability.

to ensure that n identical copies of any data-block are stored across a cluster (by default n = 3). Whilst

replicating blocks, Hadoop maintains two invariants: (1) no two replicas of a data-block are stored on any

one node, and (2) replicas of a data-block must be found on at least two racks. These two invariants directly

address the two common failures modes cited above. Should a single node fail, it is guaranteed that any data

that node stores will be found on another node. Should an entire rack fail (due to a switch, network cabling,

or power delivery failure), it is guaranteed that any data stored within that rack will be found in some other

rack. In the event of any failure, Hadoop proactively re-replicates any data-blocks found within the affected

node(s) to ensure n replicas exist and to restore the aforementioned layout invariants.

4.2.2 A Replication Invariant for Energy-Efficiency

The fact that Hadoop maintains replicas of all data affords an opportunity to save energy on inactive nodes.

That is, there is an expectation that if an inactive node is turned off, the data it stores will be found somewhere

else on the cluster. However, this is only true up to a point. Should the n nodes that hold the n replicas of a

single block be selected for deactivation, that piece of data is no longer available to the cluster. In fact, we

have found through examination of our own Hadoop cluster that when configured as a single rack, removing

any n nodes from the cluster (where n is the replication factor) will render some data unavailable, illustrated

in Figure 4.2(a). Thus the largest number of nodes we could disable without impacting data availability is
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n − 1, or merely two nodes when n = 3. While Hadoop’s autonomous re-replication feature can, over

time, allow additional nodes to be disabled, this comes with severe storage capacity and resource penalties

(i.e. significant amounts of data must be transferred over the network and condensed onto the disks of the

remaining nodes). Hadoop’s rack-aware replication strategy mitigates this effect only moderately; at best a

single rack can be disabled before data begins to become unavailable.

To address this short-fall in Hadoop’s data-layout strategy, we propose a new invariant for use during

block replication: at least one replica of a data-block must be stored in a subset of nodes we refer to as a

covering subset. The premise behind a covering subset is that it contains a sufficient set of nodes to ensure

the immediate availability of data, even were all nodes not in the covering subset to be disabled. An example

is shown in Figure 4.2(b).

This invariant leaves the specific designation of the covering subset as a matter of policy. The purpose

in establishing a covering subset and utilizing this storage invariant is so that large numbers of nodes can be

gracefully removed from a cluster (i.e. turned off) without affecting the availability of data or interrupting

the normal operation of the cluster; thus, it should be a minority portion of the cluster. On the other hand,

it cannot be too small, or else it would limit storage capacity or even become an I/O bottleneck. As such, a

covering subset would best be sized as a moderate fraction (10% to 30%) of a whole cluster, to balance these

concerns.

Just as replication factors can be specified by users on a file by file basis, covering subsets should be estab-

lished and specified for files by users (or cluster administrators). In large clusters (thousands of nodes), this

allows covering subsets to be intelligently managed as current activity dictates, rather than as a compromise

between several potentially active users or applications. Thus, if a particular user or application vacates a

cluster for some period of time, the nodes of its associated covering subset can be turned off without affecting

the availability of resident users and applications.

4.2.3 Implementation

We made the following changes to Hadoop 0.20.0 to incorporate the covering subset invariant. HDFS’s

ReplicationTargetChooser was modified to first allocate a replica on the local node generating the

data, then allocate a replica in the covering subset, and finally allocate a replica in any node not in the first

node’s rack. We changed Hadoop’s strategy in choosing “excess” replicas for invalidation (for instance, when

temporarily faulty nodes rejoin a cluster) to refrain from deleting replicas from a covering subset unless there

is at least one other replica in the subset. To prevent Hadoop from autonomously re-replicating blocks for

nodes which have been intentionally disabled, we have added a hook to Hadoop’s HDFS NameNode (i.e.

master node) which behaves similarly to Hadoop’s decommissioning of a live node. For each block stored

by a node being disabled, our routine removes the node from Hadoop’s internal list of storage locations for

that block and stores it in a separate list of offline storage locations. In contrast to node decommissioning,

replications are not scheduled for each block that goes offline. Furthermore, we adjust all queries regarding

the number of live replicas of a block to account for offline replicas, so that extraneous activity does not
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trigger superfluous block replications (e.g. should a separate node legitimately fail, Hadoop will globally

evaluate how many replicas it should generate for each block on that failed node).

Disabled nodes can gracefully rejoin a cluster after either a short period of stand-by, or even after a

complete operating system reboot, by sending a heartbeat or node registration request to the NameNode.

In addition to these core changes in HDFS’s NameNode, we have modified Hadoop’s HDFS client to

detect when it is attempting to access a block for which no replicas are available, and to ask the NameNode

to revive a node so that the block can be retrieved. This can mitigate instances where a node in the covering

subset has failed. Upon receiving such a request, the NameNode refers to its list of offline block locations

and selects a node to be woken. The NameNode has hooks to execute arbitrary commands to revive this node

(for instance, issuing Wake-on-LAN or IPMI2 power-management requests). We have also implemented a

dynamic power manager to activate nodes whenever there is a backlog of Hadoop Map or Reduce tasks on

the JobTracker, but do not evaluate it here.

Our changes to HDFS are largely mirrored in Hadoop MapReduce. We added RPCs to the JobTracker

in order to enable and disable the scheduling of tasks to nodes. We stop sending compute tasks to a node

in unison with HDFS being disabled on it. In the following experiments, nodes are disabled and enabled

manually.

4.3 Evaluation

We evaluate our changes to Hadoop through experiments on a 36-node cluster coupled with an energy model

based linearly on CPU utilization [135]. Each node is an HP ProLiant DL140G3 with 8 cores (2 sockets),

32GB of RAM, a gigabit NIC, and two disks. The nodes are connected by a 48-port HP ProCurve 2810-48G

switch (48 Gbps bisection bandwidth). This cluster was also used for the results in Section 4.1. We made

every effort to optimize the raw performance of all workloads we executed and our Hadoop environment

before experimenting with power-efficiency. To more accurately model Hadoop’s rack-based data layout and

task assignment, we arbitrarily divided the cluster into 4 “racks” of 9 nodes each. We selected one of these

racks to be the covering subset for our input datasets.

4.3.1 Methodology

In our experiments, we statically disable a number of nodes before running a Hadoop job and observe the

impact on performance, energy, power consumption, and system inactivity. We assume the power consump-

tion of a disabled node to be nil, and it contributes neither to the energy consumption nor performance of an

experiment. Since the covering set for our input dataset is comprised of 9 nodes, we can gracefully disable

up to 27 nodes.

Power models based on a linear interpolation of CPU utilization have been shown to be accurate with

I/O workloads (< 5% mean error) for this class of server [135], since network and disk activity contribute

2Intelligent Platform Management Interface: http://www.intel.com/design/servers/ipmi/

http://www.intel.com/design/servers/ipmi/
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Figure 4.3: Runtime, Energy Consumption, and Average Power Consumption for the 32GB Sort and 32GB

Scan workloads as nodes are disabled. Runtime and Energy are normalized to when all nodes are active.

negligibly to dynamic power consumption. Our nodes consume 223 W at idle and 368 W at peak utiliza-

tion. Moreover, the use of a power model enables us to evaluate hypothetical hardware characteristics or

capabilities in the future.

Our primary workloads are webdata sort and webdata scan from Hadoop’s own “gridmix” batch-throughput

benchmark. We generate several datasets (from 16GB to 128GB) using the same methodology as gridmix.

We additionally generate batch-compute traces of several sorts and scans issued randomly over a 30 minute

period (also seen in Section 4.1). We schedule enough jobs to occupy 75% of the 30 minute period, had the

jobs been issued sequentially. This workload is loosely inspired by SPECpower jbb2008 [47], which first

determines the peak “operations per second” of a machine, and then measures power consumption at several

lower operating points. Note that this workload more closely mimics a multi-user/tenant throughput-sensitive

environment, rather than a single-user/tenant latency-sensitive environment.

4.3.2 Results

Figure 4.3 depicts performance, energy consumption, and power consumption over the duration of a Sort and

Scan of a 32GB dataset, given different static configurations of the cluster. “0 sleeping nodes” is a baseline

result, where all nodes are active. The other configurations show the effect of disabling an increasing number

of nodes. We first observe that our mechanism works, and that a significant fraction of the cluster can be

disabled with no impact on data availability, contrary to the position of [10].

Quantitatively, we find that disabling nodes in all cases leads to energy savings, from 9% with Sort to 51%

with Scan. On the other hand, with the exception of disabling 9 nodes during the Scan, there is deleterious

impact to performance as nodes are disabled (up to 71% when 27 nodes are disabled with Sort). Although

in some cases severe, the penalty does not show a perfect slowdown. Overall, nodes tend to contribute less

to performance than they do to energy consumption. Dramatic reduction is seen in the aggregate power

consumption of the cluster as nodes are disabled. This clearly demonstrates that this mechanism can be used

to implement cluster-level power-capping [34] (with a commensurate reduction in service-level).
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Figure 4.4: System Inactivity Distribution of the Multi-job workload when all nodes are active and when 18

nodes are disabled.

A similar large-scale experiment would process perhaps 1 TB of data, occupying a thousand node cluster.

However, it would exhibit the same result as our small-scale experiment: at some point, nodes contribute

less to performance than they do to energy consumption. Moreover, we would expect to observe bottlenecks

in such a large-scale experiment that we don’t observe in our cluster, such as contention at the network’s

root-switch/router or individual rack uplinks. Such bottlenecks would further soften the performance penalty

of disabling nodes and further improve energy-efficiency.

To study the impact of disabling nodes on fractional-utilization workloads, we performed experiments

with batches of Hadoop jobs, described earlier. Figure 4.4 depicts the distribution of system inactivity periods

of the job trace when 18 nodes are disabled, and the distribution when all nodes are active is overlaid for

comparison. Disabling 18 nodes significantly increases the length of time spent idle for more than 82 seconds

(by 154%), and moderately increases the length of time spent idle for more than 10 seconds (18%). The

increase at 82 seconds represents more opportunity to utilize brute-force energy management knobs, such

as fully shutting a machine down, to reduce energy consumption. This is in contrast to the improvement

at 10 seconds, which represents time potentially available to use less aggressive modes, such as spinning

down disks and putting the platform and power supply into a standby mode. Note that while the increase at

10 seconds is modest, a significant fraction of the total time spent there is now contributed by intentionally

inactive nodes, and it is trivially permissible to disable them. This is not the case for the run where all nodes

are enabled, as most of this inactive time is due to spontaneously inactive nodes, for whom it is harder to

determine whether or not it is permissible to disable. Note that since this is a job trace over 30 minutes, both

experiments complete in the same amount of time, even though the constituent jobs may run for different

lengths of time. The run with 18 nodes disabled consumes 44% less energy than the run with no nodes

disabled.
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4.4 Towards an Energy-Efficient Hadoop

This work to date has just scratched the surface of research into optimizing the energy-efficiency of Hadoop

and similar distributed processing frameworks. The following describes numerous future issues to address.

4.4.1 Data Layout

Section 4.2 described our implementation of an energy-aware replication invariant, but it is easy to imagine

a multitude of alternatives. Certain types of data may exhibit temporal locality, which could be taken into

account in choosing whether or not to keep those data in a covering subset. Next, the covering subset of a

cluster should rotate among datanodes to manage durability, about which we discuss below. Finally, should a

covering subset become a write bottleneck, a lazy replication strategy could be adopted (first create a replica

wherever convenient or performant, and later move it to the covering subset).

4.4.2 Data Availability

We have assumed that it is not permissible for requested data to only reside on disabled nodes. The concept

of a covering subset and the design of our proposed replication invariant ensure some minimum availability

of all requested data. However, it is reasonable to imagine that nodes could be enabled on-demand to satisfy

availability. The efficacy of this approach would depend on how quickly a node can be enabled, or how well

the task scheduler copes with an unruly delay. Such a solution may permit an energy-efficient Hadoop with

no changes to data layout.

In addition, we currently handle the failure of a covering subset node by enabling all nodes and reconsti-

tuting replicas of the data. A less dramatic solution should be sought, or else a very minor equipment failure

can turn into a very major power spike.

4.4.3 Reliability and Durability

A supposition of this work is that the data stored on intentionally inactive nodes are indelible. The degree

to which this is true should be bounded, or the degree on which this property is depended should be limited.

At a minimum, it is prudent for sleeping nodes to be woken periodically so that the integrity of the data they

contain can be verified.

Second, the fact that HDFS (and the Google Filesystem) materializes n replicas of all data is blindly

accepted as the cost of reliability. However, spraying replicas throughout a cluster during a computation

reduces the performance of the computation (by consuming disk and network bandwidth), which ultimately

translates to wasted energy (by not spending energy on useful work). Design principles regarding reliability

should be revisited, and the incorporation of some other data durability mechanism could be considered (e.g.

an enterprise SAN). Ideally, we would quantify the trade-off between reliability and energy consumption,

such that users can make informed decisions. Note that some newer distributed processing frameworks, like
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Spark, explicitly distinguish between transient intermediate results and permanent final outputs, and provide

appropriate levels of reliability respectively [177].

4.4.4 Dynamic Scheduling Policies

A full implementation of an energy-efficient Hadoop should contain a dynamic power controller which is

able to intelligently respond to changes in utilization of a Hadoop cluster. Different jobs may have disparate

service levels requirement. Moreover, one must identify the best real-time signals to use for actuating power

management activities, and how these impact job execution. As a most basic (but fundamental) example,

inactive nodes that previously participated in a currently running job should not necessarily be disabled until

after the job is complete; these nodes may contain transient output from Map tasks that will later be consumed

by some separate Reduce task. There should be some intelligent cooperation between Hadoop’s job scheduler

and a power controller. Furthermore, the job scheduler has information that can improve the decisions made

by the power controller. For example, all of the data blocks that a job will access are determined a priori,

and this knowledge can be used to preemptively wake nodes or to hoist tasks with data on active nodes to the

front of the task queue.

4.4.5 Node Architecture

Future technology, such as PowerNap [103] and PCRAM, may make short inactivity periods as useful as

long inactivity periods in reducing energy consumption. In either case, this work is grounded in increasing

the total inactive time available. Moreover, PCRAM and solid-state disks may not soon be economical for

capacity-maximizing, cost-sensitive MapReduce clusters.

4.4.6 Workloads and Applications

While this work considered Hadoop’s MapReduce, note that HBase [168] and BigTable [17] build upon the

same filesystem infrastructure as their sibling MapReduce frameworks. While they have similar requirements

of the storage layer as MapReduce (massively scalable, distributed, robust), the nature of their workload and

activity is far removed. MapReduce computations are characterized by long, predictable, streaming I/O, mas-

sive parallelization, and non-interactive performance. On the other hand, the aforementioned structured data

services are often used in real-time data serving scenarios [17]. As such, quality-of-service and throughput

become more important than job runtime. The energy management strategies discussed in this paper should

be evaluated for these structured data services.

4.5 Related Work

Power-proportional storage has been proposed at many layers of the storage stack, including individual disks,

RAID arrays, and cluster-wide distributed storage services.
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Gurumurthi et al. described server-class hard drives with variable spindle rates, able to save power at

low load [51]. Weddle et al. evaluated a power-aware RAID layout that clusters disks into “gear groups”

(analogous to the gears of an automobile transmission) [167]. In “low gears”, data is spread across a small

number of disks to consume a small amount of power with proportionally poor performance. In higher gears,

data is spread wider for higher performance, but worse power consumption.

Kaushik et al. proposed an alternative to our covering subset policy in GreenHDFS, which uses statistical

data-classification to identify data amenable for cold-storage [76]. Rather than guaranteeing availability of

all data, they guarantee availability of hot data only.

Amur et al. extended our original HDFS work with Rabbit, which could scale-up and down its power

consumption with robustly modeled impacts on performance [4]. In addition to designating a covering subset,

they skew the layout of subsequent replicas using a power law to favor some nodes relative to others. Thus,

some nodes contain much more data than others, and these can be powered-on early to gain access to large

amounts of data with little relative increase in power consumption.

Krioukov et al. proposed NapSAC to manage power-proportional clusters of web servers [84]. They

coordinate power-management actions with the load-balancer at the root of a web serving cluster. However,

they assume all shared storage is distinct from the web servers, which greatly simplifies the problem.

Finally, Cidon et al. independently discovered that Hadoop’s random replication policy leads to data un-

availability when a small number of nodes are taken offline [18]. They proposed the MinCopySets algorithm

to group storage nodes into replication sets, statistically minimizing the number of distinct failure domains in

the whole storage system. They suggest that the parameters of this algorithm can be chosen so-as to provide

power-proportionality as well.

4.6 Conclusions

This chapter presents a first effort towards improving the power-efficiency of MapReduce frameworks like

Hadoop. First, we argued that Hadoop has the global knowledge necessary to manage the transition of cluster

nodes to and from low-power modes. Hence, Hadoop should be, or cooperate with, the energy controller

for the cluster. Second, we show that it is possible to recast the data-layout and task-distribution of Hadoop

to enable significant portions of a cluster to be powered down while still fully operational. We find that

running Hadoop clusters in fractional configurations can save between 9% and 50% of energy consumption,

and that there is a trade-off between performance energy consumption. Despite this early success, we find

that there is significant work to be done in understanding and improving the energy-efficiency of MapReduce

frameworks.



Chapter 5

High Server Utilization and

Sub-millisecond Quality-of-Service

We conclude the technical portion of this dissertation by analyzing the role that “quality of service” (QoS)

plays in causing server underutilization. To put it succinctly, the simplest strategy to guarantee good quality

of service (QoS) for a latency-sensitive workload with sub-millisecond nominal latency in a shared cluster

environment is to never run other workloads concurrently with it on the same servers. Unfortunately, this

inevitably leads to low server utilization, reducing the power-efficiency, capability, and cost effectiveness of

the cluster as a whole.

In this chapter, we analyze the challenges of maintaining high QoS for low-latency workloads when

sharing servers with other workloads. We show that workload co-location leads to latency QoS violations due

to increases in queuing delay, scheduling delay, and thread imbalance. We present techniques that address

these vulnerabilities ranging from provisioning the latency-critical service in an interference aware manner

to replacing the Linux CFS scheduler with a scheduler that provides good latency guarantees and fairness

for co-located workloads. Ultimately, we demonstrate that latency-critical workloads like memcached can be

aggressively co-located with other workloads, achieve good QoS, and that such co-location can improve a

datacenter’s effective throughput per TCO-$ by up to 52%.

5.1 Introduction

Warehouse-scale datacenters host tens of thousands of servers and consume tens of megawatts of power [11].

These facilities support popular online services such as search, social networking, webmail, video streaming,

online maps, automatic translation, software as a service, and cloud computing platforms. We have come to

expect that these services provide us with instantaneous, personalized, and contextual access to terabytes of

data. Our high expectations of these services are largely due to the rapid rate of improvement in the capability

77
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Figure 5.1: Typical server utilization leads to poor power-efficiency. Reproduced from Chapter 1.

(performance) and total cost of ownership (TCO) of the datacenters that host them.

Many factors that led to TCO and capability improvements are reaching the point of diminishing returns.

Cost was initially reduced by switching from high-end servers to commodity x86 hardware and by eliminat-

ing the overheads of power distribution and cooling (PUE has dropped from 3.0 to 1.1) [11]. Unfortunately,

these are both one-time improvements. In the past, we could also rely on deploying new servers with proces-

sors offering higher performance at the same power consumption; in effect, by replacing servers year after

year, we could achieve greater compute capability without having to invest in new power or cooling infras-

tructure. However, the end of voltage scaling has resulted in a significant slowdown in processor performance

scaling [33]. A datacenter operator can still increase capability by building more datacenters, but this comes

at the cost of hundreds of millions of dollars per facility and is fraught with environmental, regulatory, and

economic concerns.

These challenges have led researchers to pay attention to the utilization of existing datacenter resources.

Various analyses estimate industry-wide utilization between 6% [74] and 12% [40, 164]. A recent study

estimated server utilization on Amazon EC2 in the 3% to 17% range [93]. Even for operators that utilize

advanced cluster management frameworks that multiplex workloads on the available resources [60,146], uti-

lization is quite low. For instance, Reiss et al. showed that a 12,000-server Google cluster managed with Borg

consistently achieves aggregate CPU utilization of 10-20% and aggregate memory utilization of 40% [133].

This pervasive underutilization means that the vast majority of servers are operated in a power-inefficient

manner (see Figure 5.1), and that resources in these datacenters are grossly overprovisioned. Hence, an ob-

vious path towards improving both the capability and cost of datacenters is to make use of underutilized

resources; in effect, raise utilization [26, 98, 99].
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Figure 5.2: Trace of CPU and memory utilization and allocation over a 30-day period in a 12,000-node cluster

at Google. CPU and memory resources are greatly underutilized but over-reserved. Adapted from [133].

High utilization is straight-forward to achieve if system throughput is the only performance constraint:

we can co-locate multiple workloads on each server in order to saturate resources, switching between them

in a coarse-grain manner to amortize overheads. In contrast, high utilization is difficult to achieve in the

presence of complex, latency-critical workloads such as user-facing services like search, social networking,

or automatic translation [8]. For instance, updating a social networking news feed involves queries for the

user’s connections and his/her recent status updates; ranking, filtering, and formatting these updates; retriev-

ing related media files; selecting and formatting relevant advertisements and recommendations; etc. Since

multiple tiers and tens of servers are involved in each user query, low average latency from each server is not

sufficient. These services require low tail latency (e.g., low 95th or 99th percentile) so that latency outliers

do not impact end-to-end latency for the user [22].

The conventional wisdom is that latency-critical services do not perform well under co-location. The

additional workloads can interfere with resources such as processing cores, cache space, memory or I/O

bandwidth, in a manner that introduces high variability in latency and violates each service’s QoS constraints.

This concern drives operators to deploy latency-sensitive services on dedicated servers, or to grossly exagger-

ate their resource reservations on shared clusters. For instance, the Google cluster studied by Reiss showed

average CPU and memory reservation of 75% and 60% of available resources, respectively, while actual

utilization was only 20% and 40%, shown in Figure 5.2.

The goal of this work is to investigate if workload co-location and good quality-of-service for latency-

critical services are fundamentally incompatible in modern systems, or if instead we can reconcile the two.

Using memcached, a widely deployed distributed caching service as a representative workload with aggres-

sive QoS requirements (hundreds of microseconds in many commercial deployments), we study the chal-

lenges and opportunities in co-locating latency-critical services with other workloads on the same servers.
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First, we analyze three common sources of QoS degradation due to co-location: (1) increases in queuing

delay due to interference on shared resources (e.g., caches or memory), (2) long scheduling delays when

timesharing processor cores, and (3) poor tail latency due to thread load imbalance. Second, we propose

techniques and best practices to address these problems in existing servers. To manage queuing delay due

to shared resource interference, we suggest interference-aware provisioning of the latency-critical service, so

that interference leads to predictable decrease in throughput instead of intolerable spikes in latency. To ad-

dress long scheduling delays, we find that Linux’s CFS scheduler is unable to provide good latency guarantees

while maintaining fairness between tasks. We demonstrate that a modern version of the BVT scheduler [31]

affords predictable latency and fair sharing of CPU amongst tasks and allows for aggressive co-location of

latency-critical services. Finally, we find that thread-pinning and interrupt routing based on network flow-

affinity resolve much of memcached’s vulnerability to load imbalance.

We put the observations above together to evaluate the potential savings from co-locating latency-critical

services with other workloads under two important scenarios. For example, with a memcached cluster utilized

at 30%, co-location of batch workloads gives you the equivalent throughput of a 47% larger cluster that

would otherwise cost 29% more. On a general-purpose cluster with 50% CPU utilization, we can co-locate

memcached to harness stranded memory, and achieve memcached performance that would otherwise require

a 17% increase in TCO. Overall, we show that high server utilization and strong QoS guarantees for latency-

critical services are not incompatible and that co-location of low-latency services with other workloads can

be highly beneficial in modern datacenters.

5.2 Improving Utilization through Co-location

There are several reasons for the low utilization observed in datacenters today. Many companies have thou-

sands of servers dedicated to latency-critical tasks, such as webserving and key-value stores for user-data.

These servers are under-utilized during periods of low traffic, such as evenings or weekends. Even worse, the

number of deployed servers is typically determined by the requirements of traffic spikes during uncommon

events (e.g., Black Friday, celebrity mishaps), so these servers are often under-utilized, even during periods

of high nominal traffic. This creates an opportunity to use the spare capacity for other workloads. For in-

stance, a company like Facebook, which has thousands of dedicated servers for memcached, could use spare

CPU capacity to run analytics jobs that would otherwise run on a separate set of machines. This co-location

scenario can be quite beneficial in terms of computing capability and cost (discussed in Section 5.5) as long

as the analytics jobs do not unreasonably impact the quality-of-service of memcached. Such a system might

be managed by a cluster scheduler that can adjust the number of analytics jobs as the load on memcached

varies throughout the day [26, 165].

Underutilization also occurs because of the difficulty in allocating the right number of resources for jobs

of any kind, whether latency-critical or throughput-oriented. Similarly, it is difficult to build servers that

have the perfect balance of resources (processors, memory, etc) for every single workload. The analysis of
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a 12,000-server Google cluster by Reiss et al. [133] shows that while the average reservation of CPU and

memory resources is 75% and 60% of available resources respectively, the actual utilization is 20% and 40%

respectively. One could deploy memcached as an additional service that uses the underutilized processing

cores to export the underutilized memory on such a cluster for other uses, such as a distributed disk cache.

For a 12,000-server cluster, this could provide a DRAM cache with capacity on the order of 0.5 petabytes at

essentially no extra cost, provided the original workload is not disturbed and that memcached can serve this

memory with good QoS guarantees.

One can imagine several additional scenarios where co-locating latency-critical services with other work-

loads will lead to significant improvements in datacenter capability and TCO. Nevertheless, most datacenters

remain underutilized due to concerns about QoS for latency-critical services. Ultimately, this is why most

companies deploy latency-critical services, like memcached, on dedicated servers, and why latency-critical

services running on shared machines have exaggerated resource reservations (as seen from Reiss’ analysis of

Google’s cluster). Several recent works aim to discover when latency-critical services and other workloads

do not interfere with each other, in order to determine when co-location is permissible [26, 99, 179]. How-

ever, this approach is pessimistic; it dances around the symptoms of interference but does not address the

root causes. Our work provides a deeper analysis of the causes of QoS problems, which allows us to propose

more effective mechanisms to raise utilization through co-location without impacting QoS.

5.3 Analysis of QoS Vulnerabilities

In this section, we perform an analysis of the QoS vulnerabilities of latency-critical services when co-located

with other workloads. We focus on interference local to a server (processor cores, caches, memory, I/O

devices and network adapters); QoS features for datacenter networks are studied elsewhere and not considered

in this work [72].

The experimental portion of this analysis focuses on memcached. We chose memcached for several

reasons. First, it has exceptionally low nominal latency, as low as any other widely deployed distributed

service found in datacenters today (excluding certain financial “high-frequency trading” workloads). As such,

it is quite sensitive to interference from co-located work, making it easy to identify and analyze their causes.

Second, it is a concise, generic example of an event-based service, and many other widely deployed services

(including REDIS, node.js, lighttpd, nginx, etc.) share many aspects of its basic architecture and use the same

basic kernel mechanisms (epoll via libevent). Indeed, only 17% of CPU time when running memcached

is spent in user-code, versus 83% in the kernel, so the particulars of memcached are less important than

how it uses kernel mechanisms. Thus, we believe that a thorough analysis of memcached yields knowledge

applicable to other services as well. Third, memcached consists of less than 10,000 lines of code, so it is easy

to deconstruct. Finally, memcached is an important service in its own right, a cornerstone of several large

web applications, and deployed on many thousands of servers. Knowledge gleaned from its careful analysis

is useful, even outside the context of understanding interference from co-located work.
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5.3.1 Analysis Methodology

There are a couple of prerequisite steps to our analysis. First, it is important to set realistic expectations about

guarantees for latency under realistic load. For memcached, there is sufficient information about traffic pat-

terns in large-scale commercial deployments (key and data sizes, put/get distributions, etc) in order to recreate

realistic loads [6]. These deployments typically monitor tail latency and set QoS requirements thereof, such

as requiring 95th-percentile latency to be lower than 500 to 1000 microseconds under heavy load. Second, it

is equally important to carefully measure the single-request latency on an unloaded server. This measurement

helps in multiple ways. First, if there is significant variability, it will be difficult to meet an aggressive QoS

target even without interference from other workloads unless requests with high and low service times are

prioritized and treated separately within the application. Second, the behavior of a well-tuned server can be

approximated with a basic M/M/n queuing model (independent arrival and service time distributions), where

n is the number of worker threads concurrently running on the server [49, 78, 105]. The unloaded latency

(service time) allows us to estimate the performance potential of a well-tuned system and pinpoint when

observed behavior deviates due to interference or any other reason.

The main part of our analysis consists of separating the impact of interference from co-located workloads

into its three key causes: (1) queuing delay, (2) scheduling delay, and (3) load imbalance.

Queuing delay occurs due to coincident or rapid request arrivals. Even without co-location, the M/M/1

model suggests that, given a mean service rate of µ and mean arrival rate of λ, the average waiting time

is 1/(µ − λ) and 95th-percentile latency roughly 3× higher (ln( 100
100−95

)/(µ − λ)). Interference from co-

located workloads impacts queuing delay by increasing service time, thus decreasing service rate. Even if

the co-located workload runs on separate processor cores, its footprint on shared caches, memory channels,

and I/O channels slows down the service rate for the latency-critical workload. Even if a single request is

only marginally slower in absolute terms, the slowdown is compounded over all queued requests and can

cause a significant QoS problem. As λ approaches µ (i.e. at high load), wait time asymptotically increases,

experienced as significant request latency by clients. It is common practice to take this asymptotic response

into account when provisioning servers for a latency-sensitive service in order to ensure that no server is

ever subjected to load that leads to excessive latency (i.e. provision servers for a load of at most 70-80%

of µ). The impact of co-location on queuing delay can be thoroughly characterized by running the latency-

critical service concurrently with micro-benchmarks that put increasing amounts of pressure on individual

resources [25].

Distinct from queuing delay, scheduling delay becomes a QoS vulnerability when a co-located workload

contends for processor cores with a latency-critical workload. That is, if the OS or system administrator

assigns two tasks to the same core, they become subject to the scheduling decisions of the OS, which may

induce long-enough delays to cause QoS violations. There are two parts to scheduling delay that must be

considered independently: scheduler wait time, which is the duration of time that the OS forces a task to

wait until it gets access to the core while another task runs, and context switch latency, which is the time it

takes the OS and hardware to switch from running one application to another after the scheduling algorithm
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has determined that it is the others’ turn to run. The impact of co-location on scheduling delay can be

characterized by constructing co-location scenarios that exacerbate the priorities and idiosyncrasies of the

scheduling algorithm. We present such scenarios for commonly used Linux schedulers in Section 5.3.2.

Finally, load imbalance across threads of a multi-threaded service can lead to poor overall tail latency,

even when the cumulative load on a server is low and average or median latency is asymptomatic. Co-located

work can exacerbate load imbalance in a multi-threaded service in numerous ways: by causing additional

queuing delay on only the threads that share hardware resources with the interfering work, by incurring

scheduling delay on a subset of threads due to the interfering work, or when the OS migrates threads of

the latency-sensitive application on top of each other to make way for the co-located work, causing the

application to effectively interfere with itself. A latency-sensitive service’s vulnerability to load imbalance

can be easily ascertained by purposefully putting it in a situation where threads are unbalanced. For example,

we can achieve this by running it with N + 1 threads on an N -core system, by forcing only one thread to

share a hyper-threaded core with another workload, or by timesharing one core with another workload. By

the pigeon-hole principle, such arrangements necessarily reduce the performance of at least one thread of the

latency-sensitive service. If the service does not employ any form of load-balancing, this will cause at least

one thread of the service to exhibit asymptotic queuing delay at far lower load than the other threads, and is

readily observable in measurements of tail latency.

Note that queuing delay, scheduling delay, and imbalance should not be characterized at a fixed load, e.g.,

at the maximum throughput the server can support or the maximum throughput at which good QoS is still

maintained. Since the goal of co-location is to increase utilization when the latency-critical service is at low

or medium load, the characterization must be performed across all throughput loads, from 0% to 100%. This

provides valuable data across the whole range of likely loads for the latency-critical service. As we show in

Section 5.5, it also allows us to work-around interference issues by using cluster-level provisioning instead

of server-level optimizations.

5.3.2 Analysis of Memcached’s QoS Sensitivity

Experimental Setup

We now make the preceding analysis concrete by applying it to memcached. For all of the following measure-

ments, we run memcached version 1.4.15 on a dual-socket server populated with Intel Xeon L5640 processors

(2× 6 cores, 2.27 Ghz), 48GB of DDR3-1333 memory, an Intel X520-DA2 10GbE NIC and running Linux

3.5.0 (with ixgbe driver version 3.17.3). We disable the C6 C-state [138] during our experiments, as it induces

high latency (100s of microseconds) at low load due to its wakeup penalty. We also disable DVFS, as it causes

variability in our measurements at moderate load, and as its efficacy has diminished as voltage scaling has

slowed [85]. Finally, we disable the irqbalance service and manually set the IRQ affinity for each queue

of the X520-DA2 to distinct cores (using Intel’s set irq affinity.sh script). Otherwise, memcached

performance suffers due to grave softIRQ imbalance across cores. In this configuration, memcached achieves
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Figure 5.3: Life of a memcached request. Note that actual request processing (highlighted) is but one step on

a long journey.

1.1M queries per second (QPS) for non-pipelined requests, and over 3.0M QPS for pipelined requests.

We generate client load for the server with mutilate1, a high-performance, distributed memcached load-

generator we developed that can recreate the query distributions at Facebook reported by Atikoglu et al. [6].

Requests are paced using an exponential distribution, and access 200-byte values uniformly at random from

a set of 1,000,000 30-byte keys (sized to match the APP pool studied by Atikoglu). Surprisingly, we found

no difference in latency with larger datasets or non-uniform access patterns. We do not study larger value

sizes as we are focused on interference due to co-located workloads, not adversarial request patterns. As

memcached is commonly accessed synchronously, we do not pipeline requests. Even in environments that

make extensive use of parallel multi-GETs, keys are sharded across multiple servers, such that the number of

requests handled by any one server is low. In any case, we configure mutilate to make hundreds to thousands

of connections to the memcached server, spread across 20 client machines. This ensures that we can generate

enough load on the server to saturate it and observe server-side queuing delay, while never taxing the clients

enough to see client-side queuing delay.

Memcached Request Pipeline

We begin the analysis by presenting a detailed description of memcached’s request pipeline. There is sub-

stantially more to executing a memcached query than just looking up a value in a hash-table. In order to gain

a more detailed understanding, we traced the life-cycle of a memcached request in Linux. Figure 5.3 depicts

the basic steps involved.

A client initiates a request by constructing a query and calling the write() system call (1). The request

undergoes TCP/IP processing (2), is transmitted by the client’s NIC (3), and is then sent to the server’s NIC via

cables and switches, where upon the processor core running memcached receives an interrupt (since the Intel

1https://github.com/leverich/mutilate/
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Who What Unl. Ctx Sw. Loaded L3 int.

Server

RX 0.9us 0.8us 1us 1us

TCP/IP 4.7us 4.4us 4us 4us

EPoll 3.9us 3.1us 2,778us 3,780us

libevent 2.4us 2.3us 3,074us 4,545us

Read 2.5us 2.1us 5us 7us

memcached 2.5us 2.0us 2us 4us

Write⋆ 4.6us 3.9us 4us 5us

Total 21.5us 18.7us 5,872us 8,349us

Client
End-to-end 49.8us 47.0us 6,011us 8,460us

TX-to-RX 36us 30us - -

Switch RX-to-TX 3us - - -

Table 5.1: Latency breakdown of an average request when the server process is unloaded (Unl), when it is

context-switching with another process (Ctx Sw), when it is fully loaded (Loaded), and when it is subjected

to heavy L3 cache interference while fully loaded (L3 int). Client “TX-to-RX” is the time from when the

client has posted a packet to its NIC until it receives a reply, and “End-to-end” is the time reported by mutilate

on the clients. Switch latency is estimated by connecting the client directly to the server and measuring the

difference in latency. ⋆For brevity, we include TCP/IP and TX time in Write.

X520-DA2 NIC maintains flow-to-core affinity with its “Flow Director” hardware [128,171]). Linux quickly

acknowledges the interrupt, constructs a struct skbuff, and calls netif receive skb in softIRQ

context (4). After determining it is an IP packet, ip rcv is called (5), and after TCP/IP processing is complete,

tcp rcv established is called (6). At this point, the memcached process responsible for handling this packet

has been identified and activated (marked as runnable) (7). Since there is no more packet processing work to

be done, the kernel calls schedule to resume normal execution (8). Assuming memcached is asleep waiting

on an epoll wait system call, it will immediately return and is now aware that there has been activity on

a socket (9). If memcached is not asleep at this point, it is still processing requests from the last time that

epoll wait returned. Thus, when the server is busy, it can take a while for memcached to even be aware

that new requests have arrived. If epoll wait returns a large number of ready file descriptors, it executes

them one by one and it may take a long time for memcached to actually call read on any particular socket

(10). We call this libevent time. After returning from epoll wait, it will eventually call read on this

socket (11), after which memcached finally has a buffer containing the memcached request. After executing

the request by looking up the key in its object hash-table, memcached constructs a reply and write’s to the

socket (13). Now TCP/IP processing is performed (14) and the packet is sent to the NIC (15). The remainder

of the request’s life-cycle at the client-side plays out similar to how the RX occurred at the server-side. It is

interesting to note that a large portion of this request life-cycle is played out in the Linux kernel. We find that

only 17% of memcached’s runtime is spent in user code vs. 83% in kernel code. 31% of runtime is spent in

Soft IRQ context.

Using SystemTap [32], we have instrumented key points in the Linux kernel to estimate how long each

step of this process takes. By inspecting the arguments passed to kernel functions and system calls, we are

able to create accurate mappings between skbuffs, file descriptors, and sockets. Using this information, we



CHAPTER 5. HIGH SERVER UTILIZATION AND SUB-MILLISECOND QUALITY-OF-SERVICE 86

can track the latency of individual requests as they work their way through the kernel, even though hundreds

of requests may be outstanding at any given time. We take measurements for an unloaded case (where only

one request is outstanding), a context switching case (where a cpu-bound task is running and the OS must

context-switch to memcached after receiving a packet), a loaded case (where memcached is handling requests

at peak throughput), and an interference case (where we subject the loaded memcached to heavy L3 cache

interference).

Manifestation of Queuing Delay

Table 5.1 presents the latency breakdown by condensing measurements into key periods: driver RX time,

TCP/IP processing, waiting for epoll to return (which includes process scheduling and context switching

if memcached isn’t already running), libevent queuing delay, read system-call time, memcached execution

time, and write system-call time. In the unloaded case there are no surprises: TCP/IP processing, scheduling,

and epoll take a plurality of time. We discuss the context-switching case in Sec. 5.3.2. Distinct from the

unloaded case, our measurements of the loaded case gives us a key insight: the vast majority of the latency

when memcached is overloaded is queuing delay. This queuing delay manifests itself in the measurement

of “libevent” time, but also “epoll” time. When overloaded, epoll wait is returning hundreds of ready

file descriptors. Thus, it will take a while to get to any one request (long “libevent” time). Second, since

so many requests are being received by memcached at once, it will take a long time to process them all

and call epoll wait again. This shows up in the long “epoll” time measured for subsequent packets.

When subjected to interference (for instance, L3 interference), the moderate growth in the time it takes to

process each individual request (read, memcached) results in a substantial increase in this queuing delay

(epoll, libevent).

This increase in queuing delay due to L3 interference, however, is observed most distinctly at high load.

At low load, the interference is hardly measurable. Figure 5.4 plots latency vs. QPS for memcached when

subjected to a range of loads. When subjected to L3 cache interference, its service rate is effectively reduced,

resulting in asymptotic queuing delay at lower QPS. However, note that whether or not L3 interference is

present, latency at 30% QPS is quite similar. This indicates that the impact on per-request latency due to

interference is in and of itself insufficient to cause QoS problems at low load. Instead, queuing delay at high

load is the real culprit. We build on this observation in Section 5.4.1.

Manifestation of Load Imbalance

As discussed in Section 5.3.1, it is a simple exercise to determine if a service is vulnerable to multi-threaded

load imbalance: simply run it with N + 1 threads on an N -core system. Figure 5.5 shows the impact on

memcached QPS vs. latency in this scenario (13 threads on a 12-core system). A pronounced spike in tail

latency is observed at around 50% of peak QPS not seen in lower-order statistics (i.e. median or average).

Interestingly, we found that a similar spike in tail latency is observed even when memcached is run with just

12 threads (instead of 13) on this 12-core system (i.e. N instead of N + 1 on an N -core system). Upon
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Figure 5.4: Impact of heavy L3 interference on latency. Interference causes substantial queuing delay at high

load, but has little impact at low to moderate load (e.g., at 30%).

inspection, we found that Linux frequently migrated threads from one core to another, often ending up with

some cores with two threads and other cores with no threads, leading to essentially the same tail latency re-

gressions we observed with 13 threads. Linux’s “affine wakeup” mechanism appears to be most responsible

for these migrations, causing memcached threads to migrate closer to each other, even when there is only mi-

nor contention for shared mutexes. Moreover, Linux’s CPU load-balancing mechanism operates at the time

scale of 100s of milliseconds, so any mistake in thread placement lasts long enough to be observed in mea-

surements of tail latency. Linux’s thread migration issues notwithstanding, these experiments demonstrate

that memcached performs no dynamic load balancing across threads. Indeed, inspection of its source code

shows that it assigns incoming client connections to threads statically in a round-robin fashion. This lack of

load balancing is the root cause of memcached’s vulnerability to load imbalance, and a contributing factor to

its sensitivity to queuing delay and scheduling delay.

Interestingly, UDP connections to memcached do not suffer from this load imbalance problem in the same

way as TCP connections. Memcached monitors the same UDP socket across all threads, and UDP requests

are handled by whichever thread reads the socket first. However, kernel lock contention on this UDP socket

limits peak UDP throughput at less than 30% of that using TCP. Indeed, Facebook rearchitected memcached’s

UDP support to use multiple sockets in order to work around this throughput problem [140].

Manifestation of Scheduling Delay

As discussed in Section 5.3.1, scheduling delay consists of context-switch latency and wait time. Seen in

Table 5.1, our SystemTap traces show that not only does memcached not seem to incur any overhead due



CHAPTER 5. HIGH SERVER UTILIZATION AND SUB-MILLISECOND QUALITY-OF-SERVICE 88

0 

1,000 

2,000 

3,000 

4,000 

5,000 

6,000 

7,000 

8,000 

9,000 

10,000 

 5
0
,0
0
0
  

 1
0
0
,0
0
0
  

 1
5
0
,0
0
0
  

 2
0
0
,0
0
0
  

 2
5
0
,0
0
0
  

 3
0
0
,0
0
0
  

 3
5
0
,0
0
0
  

 4
0
0
,0
0
0
  

 4
5
0
,0
0
0
  

 5
0
0
,0
0
0
  

 5
5
0
,0
0
0
  

 6
0
0
,0
0
0
  

 6
5
0
,0
0
0
  

 7
0
0
,0
0
0
  

 7
5
0
,0
0
0
  

 8
0
0
,0
0
0
  

 8
5
0
,0
0
0
  

 9
0
0
,0
0
0
  

 9
5
0
,0
0
0
  

 1
,0
0
0
,0
0
0
  

 L
a
te
n
cy
 (
u
se
cs
) 

Memcached QPS 

Latency vs. QPS (# threads = # cores + 1) 

Latency (95th‐%) 

Latency (50th‐%) 
At least one core has 

>1 thread at all @mes 

 

Only manifests as 

tail‐latency 

Figure 5.5: Impact of load imbalance on memcached QoS.

to the context switch after receiving a request, it actually goes slightly faster. We limit the CPU to the C1

C-state for this experiment, so this is not C3 or C6 transition overhead. We suspect that this overhead has

to do with the C1 state or with Linux’s management of timers for “tickless” idle support. In any event, the

upshot is that Linux can quickly switch to memcached and service a request with little impact on end-to-end

latency, even when another application is running on the CPU core when the request arrives.

Interestingly, contention for the L1 caches or TLBs when timesharing a CPU appears to not be an issue

for memcached. Figure 5.6 shows latency vs. QPS for memcached when timesharing a CPU with a wide

variety of SPEC CPU2006 workloads. In this experiment, we run memcached with “nice -n -20”, so that it

essentially never incurs wait time; we are only observing the impact of context switching (direct and indirect)

with another workload. The fact that memcached is affected so little by contention for the L1 caches and

TLBs may be unexpected, but it can be explained intuitively. First, per-request latency is inconsequential

compared to the latency incurred from queuing delay, so any increase in per-request latency at low-load is

effectively negligible. Second, at high-load, memcached is running often enough to keep its cache footprint

warm, so it sees essentially no interference. Finally, since the majority of memcached’s runtime is spent

in kernel code (83% of runtime), the TLB flushes due to each context switch have little impact; the kernel’s

code is mapped using large pages. Our conclusion from this experiment is that context-switching is not itself a

large contributor to memcached latency. If memcached is vulnerable to scheduling delay, it is almost entirely

due to wait time induced by the OS scheduling algorithm.

In contrast to context-switch time, memcached is quite vulnerable to scheduler wait time. We demonstrate

the scale of the danger by forcing memcached to timeshare a core with a “square-wave” workload. Figure 5.7

shows latency vs. QPS for memcached when timesharing a CPU with such a square-wave antagonist, where

the antagonist runs in a tight loop (i.e. while(1);) for 6ms, sleeps for 42ms, and then repeats; its average

CPU usage is only 12.5%. As can be seen, when using CFS (Linux’s default scheduler), memcached starts
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Figure 5.6: Impact of context-switching with other workloads on memcached latency.

exhibiting exceptionally long tail-latency starting at around 12% of peak QPS, where the aggregate load on

the CPU (including both memcached and the antagonist) is only around 25%. The fact that latency spikes

when memcached is at approximately the same CPU usage as the antagonist is an interesting artifact of CFS’s

algorithm; we explore this in detail in Section 5.3.3. At 87% QPS (∼100% CPU load), memcached must yield

involuntarily to ensure the antagonist gets fair access to the CPU, so it necessarily experiences long latency.

To illustrate the consequences of this vulnerability in a more realistic setting, we measured QoS for two

latency-sensitive services running simultaneously on one server: memcached (with average latency measured

on the order of 100us) and a synthetic event-based service similar to memcached with average latency on the

order of 1ms. We ran both services concurrently in every combination of QPS from 10% to 100% and

monitored latency and throughput. The results are charted in Figure 5.8, which reports which of the two

services were able to maintain acceptable QoS at each load point. Note that memcached fails to achieve

good QoS, even when the co-scheduled workload is offered exceptionally low load (as circled in Fig. 5.8).

Additionally, the 1ms service fails to meet its QoS requirement at higher loads, as it is sensitive to excessive

wait time as well. The consequence of this result is that neither latency-sensitive service can safely be co-

located with the other. Overall, we can conclude that memcached is particularly sensitive to scheduler wait

time, and that addressing it (either by adjusting the scheduler or prohibiting CPU time-sharing) is paramount

to running memcached with good QoS.

5.3.3 Scheduling Delay Analysis

We noted in Section 5.3.2 that memcached experienced a spike in scheduler wait time right around the point

when its CPU usage exceeded that of a co-scheduled application, despite the fact that the CPU is underutilized
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Figure 5.7: Demonstration of scheduler wait-time induced on memcached when run concurrently with a

“square-wave” antagonist. The antagonist runs for 6ms every 48ms (12.5% load), and is assigned an equal fair

share weight as memcached. Using the CFS scheduler, memcached exhibits unacceptably high tail latency

even at low load. With BVT (discussed in Sec. 5.4.3), memcached tail latency is as good as if there were

no interference until it exceeds its fair share of CPU time. Both schedulers cap memcached’s throughput at

∼87%, where the CPU is 100% utilized.

overall. We describe this behavior in detail in this section.

The essence of the “Completely Fair Scheduler” (CFS) [124], Linux’s general-purpose scheduling al-

gorithm is quite simple: all non-running tasks are sorted by “virtual runtime” and maintained in a sorted

run-queue (implemented as a red-black tree). Tasks accumulate virtual runtime (a weighted measure of ac-

tual runtime) when they run. Whenever there is a scheduling event (i.e. a periodic timer tick, an I/O interrupt,

a wakeup notification due to inter-process communication, etc.) the scheduler compares the virtual runtime

of the current running task with the virtual runtime of the earliest non-running task (if the event is a periodic

timer tick) or the task being woken (if the event is a wakeup). If the non-running task has a smaller virtual

runtime, the scheduler performs a context switch between the two tasks. Overall, the algorithm attempts to

guarantee that the task with the lowest virtual runtime is always the running task, within some error bounded

by the maximum period between scheduling events times the number of running tasks. CFS also uses several

heuristics to prevent overscheduling (i.e. sched min granularity). Users may assign “shares” to tasks,

and a task’s accumulation of virtual runtime when running is weighted inversely proportional to its number

of shares. In the long term, tasks receive a fraction of CPU time proportional to the fraction of total shares

they are assigned.

An important detail in the design of CFS is how virtual runtime is assigned for a task that wakes up and

becomes runnable. The assignment of virtual runtime for waking tasks balances two properties: (1) allowing

the waking task to run promptly, in case the event that caused its wakeup needs to be handled urgently, and
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Linux’s CFS scheduler. For both services, we require that its 95th-% latency never exceed 5× its 95th-%

latency as measured at low-load. Both services achieve tolerable QoS only in a narrow range of loads, so it

is unwise to co-locate them together without taking corrective action.

(2) not giving an unfair share of processor time to waking tasks. CFS balances these two goals by clamping

the virtual runtime of a waking task to the minimum virtual runtime of all non-sleeping tasks minus an offset

L (called “thresh” in the kernel), which defaults to one half of the target scheduling latency (L = 24ms/2 =

12ms): vruntime(T ) = max(vruntime(T ),min(vruntime(∗))− L).

Unfortunately, CFS’s wakeup placement algorithm allows sporadic tasks to induce long wait time on

latency-sensitive tasks like memcached. The fundamental problem is that the offset CFS uses when placing

the waking task is larger than memcached’s nominal request deadline. Illustrated in Figure 5.9, if memcached

(A) is serving a request when another task B wakes up, it must wait at least for L time before it can resume

processing requests. The only way memcached can be guaranteed to never see this delay is if its virtual

runtime never exceeds that of the other task. Coming back to Figure 5.7, this fully explains why memcached

achieves good quality of service when its load is lower than 12%; it is accumulating virtual runtime more

slowly than the square-wave and always staying behind, so it never gets preempted when the square-wave

workload wakes.

5.3.4 Discussion

The preceding sections have concretely demonstrated how memcached experiences significant reductions in

QoS due to queuing delay, scheduling delay, or load imbalance in the presence of co-located workloads. In the

course of this study, we additionally evaluated the impact of interference due to network-intensive co-located
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Figure 5.9: A depiction of CFS run-queue when a task wakes up. Task B is initially asleep (1). When it

wakes up, it is placed L behind task A and preempts task A (2), inducing wait time on A while B runs (3).

workloads. Interestingly, these workloads caused far less interference than expected for the following reasons:

(1) memcached, particularly with realistic request size distributions, saturates the server’s CPUs before it

saturates the 10GbE network, and (2) Intel’s Flow Director [171] largely isolates co-located workloads from

interference due to interrupt handling for large network loads; network interference was indeed a problem

when we disabled Flow Director and only used RSS.

It’s worth noting that there are a large variety of scenarios where memcached’s QoS could suffer even in

the absence of co-located workloads. For instance, a misbehaving client could flood the server with requests,

denying service to other clients; a client could try to mix large and small requests together, causing long

serialization latency for the small requests; the request stream could contain an unusually high number of

“SET” requests, which induces frequent lock contention between threads; or the server could genuinely be

overloaded from provisioning an insufficient number of servers for a given load. We do not provide a detailed

characterization of these vulnerabilities here, as this work is focused on interference caused by co-located

workloads.

5.4 Addressing QoS Vulnerabilities

This section describes robust strategies that can be employed to address the vulnerabilities identified in Sec-

tion 5.3 when co-locating latency-sensitive services on servers.

5.4.1 Tolerating Queuing Delay

In Figure 5.4, we demonstrated that interference within the memory hierarchy from co-located workloads

only causes tail latency problems when it exacerbates queuing delay. The upshot is that workloads may be

safely co-located with each other, despite interference, so long as they don’t induce unexpected asymptotic

queuing delay. Since queuing delay is a function both of throughput (service rate) and load, we can tolerate
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Figure 5.10: Pinning memcached threads to distinct cores greatly improves load balance, consequently im-

proving tail latency.

a reduction in throughput (due to interference) if we also reduce the load on the service for any given server.

Additional servers can be added to pick up the slack for the low-latency service. Thus, we propose that load be

provisioned to services in an interference-aware manner, that takes into account the reduction in throughput

that a service might experience when deployed on servers with co-located workloads.

Load provisioning is already an important aspect of the life-cycle of distributed datacenter services. Pro-

visioning entails selecting how many and what type of servers are needed to handle a given aggregate request

load. While interference-aware provisioning may be pessimistic with respect to how much load an individual

server could support for a given service, it accommodates the potential for interference on shared hardware

resources and is very permissive in terms allowing other workloads to be co-located on the same hardware.

Hence, while interference-aware provisioning may use more servers for the latency-critical service, the TCO

for the cluster as a whole may actually be lower because any capacity underutilized by the latency-critical

service can be used by other workloads. We give a concrete example of how interference-aware provisioning

can improve overall cluster utilization and TCO in Section 5.5.

5.4.2 Tolerating Load Imbalance

In Section 5.3.2, we reported that memcached exhibits a profound spike in latency at around 50% load when

running with N threads on an N -core system due to spurious thread-migrations placing multiple threads

on a single core. Note that this latency spike is in the absence of co-located work; we cannot operate this

server at high load, even if it is dedicated to this workload. One solution to this problem is particularly

straight-forward and effective: threads can be pinned explicitly to distinct cores, so that Linux can never

migrate them on top of each other. We made a simple 20-line modification to memcached 1.4.15 to query

its available CPU set at startup and to statically pin threads (using sched setaffinity()) as they are
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spawned to each core in round-robin order. After this simple modification, memcached handles up to near

90% of peak load (over 900,000 QPS) with 95th-% latency under 1ms (see Figure 5.10). We should also

note that the flow-to-core affinity provided by Intel’s ixgbe driver for their X520-DA2 NIC also contributes

substantially to maintaining balance amongst memcached threads: it ensures that the interrupt load on each

core is proportional to its request rate, and that network interrupts destined for co-located workloads do not

disturb the cores running memcached [128, 171].

Although thread-pinning is of exceptional utility in this case, it does not address the deeper problem: that

memcached makes no attempt to perform load-balancing amongst threads on its own. Thus, it is important

to heed the following guidelines when deploying memcached with co-located work. First, it is imperative

to pin memcached threads to distinct cores, as demonstrated above. Second, spawn at most N memcached

threads on an N -core system; memcached achieves no higher performance with more threads, and tail latency

is adversely affected if some cores have more threads than other cores. Third, if you wish to share a CPU

core with other workloads (either via OS scheduling or hyper-threading), you might as well share all of the

cores that memcached is running on; memcached’s tail latency will ultimately be determined by its slowest

thread. Finally, if thread load imbalance is unavoidable but certain requests require minimal latency, issue

those requests over a UDP connection (Sec. 5.3.2). In the long-term, memcached should be rearchitected to

proactively load balance either requests or connections across threads, like Pisces [149].

5.4.3 Tolerating Scheduling Delay

As described in Section 5.3.3, the root cause of scheduler-related tail latency lies with CFS’s wakeup place-

ment algorithm, which allows workloads which frequently sleep to impose long wait times on other co-located

workloads at arbitrary times. Fortunately, there are several strategies one can employ to mitigate this wait time

for latency-sensitive services, including (1) adjusting task share values in CFS, (2) utilizing Linux’s POSIX

real-time scheduling disciplines instead of CFS, or (3) using a general purpose scheduler with support for

latency-sensitive tasks, like BVT [31].

Adjusting task shares in CFS

Assigning an extremely large share value to a latency-sensitive task (i.e. by running it with “nice -n -20”

or by directly setting its CPU container group’s shares value) has the effect of protecting it from wakeup-

related wait time. Recall from Section 5.3.3 that a task’s virtual runtime advances inversely proportional

to the fraction of shares that a particular task possesses relative to all other tasks. Thus, if a task A has a

very high shares value, its virtual runtime advances at a crawl and every other task advances at a relative

sprint. Thus, each time a task other than A runs, it accrues significant virtual runtime and leaps far ahead

of A. Consequently, these tasks are essentially never eligible to preempt A or induce wait time on it, and

effectively only run when A yields.

While effective at mitigating wait-time for latency-sensitive tasks, such a strategy presents a conundrum

for servers with co-located workloads: an unexpected spike in load on the latency-sensitive service, or even a
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bug, could cause its CPU usage to spike and starve the other task. In effect, a task’s immunity to wait time and

its share of CPU time are tightly coupled in CFS, since the only tunable parameter available to the end-user

(shares) affects both. This limitation is fine for some situations (i.e., co-locating best-effort analytics jobs

with a memcached cluster at Facebook), but is inappropriate when co-locating multiple user-facing services

(i.e. at Google).

POSIX real-time scheduling

An alternative to CFS are the POSIX real-time scheduling disciplines implemented in Linux, SCHED FIFO

or SCHED RR.2 These schedulers are priority-based, where higher-priority tasks may never be preempted

by lower-priority tasks, as opposed to the general-purpose fair-share nature of CFS. Tasks scheduled with

the POSIX real-time schedulers are implicitly higher-priority than CFS tasks in Linux, so they are never

preempted by CFS tasks. Thus, latency-sensitive tasks scheduled using the real-time schedulers never incur

CFS-induced wait-time due to other co-located tasks. Additionally, multiple latency sensitive tasks can be

safely run concurrently up to an aggregate load of ∼70% so long as they are assigned priorities rate mono-

tonically (i.e. lower latency begets a higher priority) [92].

Similar to using CFS with a high shares value, the real-time schedulers enable high-priority tasks to starve

other tasks; a load-spike or bug in a latency-sensitive service could lead to unfair use of the CPU. Again, this

is tolerable when co-located with best-effort workloads, but not with other workloads with throughput or

latency requirements.

CPU Bandwidth Limits to Enforce Fairness

For both CFS and the real-time schedulers, Linux allows users to specify a CPU bandwidth limit [158], where

a user specifies a runtime “quota” and “period” for a task. This mechanism can prevent high-share tasks from

starving others, but it comes with its own drawback: it eliminates the property of “work conservation” from

the schedulers. So even if CPU time is unused and available, a task would not be permitted to run if it

exceeded its bandwidth quota. While not terribly important at low loads, non-work-conserving means that

a task operating at close to its share of CPU time can be hit with long latency as it waits for its quota to be

refilled, even if the server is otherwise underutilized.

We demonstrate the negative consequences of non-work-conservation by repeating the experiment of

Figure 5.8, where two latency-sensitive tasks are co-located on the same server, but using the real-time

SCHED FIFO scheduler for both tasks instead of CFS. We assigned memcached a higher priority than the

1ms server (i.e. rate-monotonically). We assigned quotas to each of the two services proportional to how

high of QPS they were offered at each point (i.e. at 30%/30%, each service is given a quota of 50% of total

2The principle difference between SCHED FIFO and SCHED RR is that SCHED FIFO tasks run indefinitely until they either volun-

tarily yield or a higher-priority task becomes runnable, where as SCHED RR tasks time-share in round-robin order with a slice duration

of 100ms.
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Figure 5.11: Comparison of scheduling algorithms. “Reservations” indicates whether CPU time can be

guaranteed for distinct tasks. “Configuration Preemption” indicates whether the scheduler allows the user to

indicate which task may preempt another. See Figure 5.11 for axes on the QoS tables.

CPU time), and a period of 24ms (equal to CFS’s scheduling period). The result is depicted in the middle col-

umn of Figure 5.11. In this configuration, the co-location is substantially improved compared to the baseline

CFS: there is a large range of moderate loads where both services achieve acceptable QoS. Still, it leaves the

server quite underutilized: at least one service degrades when aggregate load exceeds 70%. The degradation

is entirely due to the bandwidth limit and non-work-conservation: even though CPU time is available, the

services are prohibited from running by fiat.

Borrowed Virtual Time (BVT)

In contrast to CFS and the POSIX real-time schedulers, Borrowed Virtual Time (BVT) [31] affords a more

sensible option for operators looking to co-locate latency-sensitive tasks with others. BVT extends virtual-

time scheduling by adding a user-provided “warp” parameter that specifies a static offset to be applied to

a task’s virtual runtime when making scheduling decisions; this adjusted virtual runtime is termed effective

virtual runtime. This adjustment biases short-term preemption actions, but has minimal impact on long-

term throughput fairness, which is still dictated by the fair-share weight assigned to different tasks. This

behavior can be seen in Figure 5.12. Essentially, BVT allows preemption priority and fair-share allocation to

be controlled independently, rather than being tightly coupled as in CFS.

We have implemented BVT as a concise patch to CFS (approx. 150 lines changed) which allows users to
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Figure 5.12: A depiction of BVT run-queue when a task wakes up. Task B is initially asleep. When it wakes

up, it gets placed L behind A, as it would with CFS. However, since task A’s warp (w(A)) is larger than L, A

does not get preempted. Long-term throughput is still determined by the tasks’ relative share weights.

assign a “warp” parameter for tasks (or CPU container groups). We additionally added a simple extension to

BVT that uses Linux’s high-resolution tick infrastructure (HRTICK) to re-evaluate scheduling decisions after

a short grace period if a waking task barely misses preempting the current running task; this improves its

worst-case scheduling error. Tasks with a warp of 0 behave no differently than regular CFS. The efficacy of

BVT is readily apparent when the previous square-wave and latency-sensitive service co-location experiments

are rerun using BVT as the scheduler. As seen in Figure 5.7, when memcached is run concurrently with the

square-wave antagonist using BVT, memcached no longer suffers unacceptable tail latency at low loads. It

is not until memcached exceeds 50% load (and starts using more than its fair-share of CPU time) that it

begins to incur long latencies due to wait-time. In addition, warp values can be assigned rate-monotonically

much as priorities can be assigned rate-monotonically in POSIX real-time scheduling. In the case of co-

locating memcached and a 1ms latency-sensitive service, BVT achieves good QoS for both services up to

high aggregate load (80%-90%), as seen in Figure 5.11.

Overall, there are several viable strategies to mitigate scheduling delay for latency-sensitive services when

co-located with other workloads. When the co-located service is merely “best-effort”, it is sufficient to run

the latency-sensitive service with high CFS shares. If the co-located service is latency-sensitive or requires

a guaranteed portion or fair-share of CPU throughput, a general-purpose scheduler with support for latency-

sensitive tasks, like BVT, is required.

5.5 Co-location Benefits

The preceding sections have shown that a latency-sensitive workload like memcached can be quite resilient to

interference caused by co-located workloads. In this section, we analyze the additional utility (performance,

power-efficiency, and TCO) that can be extracted from clusters through co-location, either by deploying other

workloads onto an existing memcached cluster, or deploying memcached onto an existing batch-compute

cluster. We use a combined experimental/analytical approach. We measure latency vs. QPS for memcached
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Memcached QPS (% of peak)

10% 30% 50% 70% 90%

Workload Memcached 95th-% Latency (usecs)

none 122 132 156 209 387

400.perlbench 141 161 195 270 474

470.lbm 325 302 309 380 642

mean 217 215 242 307 512

Workload CPU2006 Instr. per second (norm.)

400.perlbench 74% 42% 22% 10% 14%

401.bzip2 79% 48% 41% 17% 22%

403.gcc 75% 41% 23% 14% 18%

410.bwaves 65% 29% 17% 9% 10%

416.gamess 78% 49% 28% 17% 17%

429.mcf 77% 54% 38% 28% 26%

433.milc 80% 56% 38% 29% 26%

434.zeusmp 73% 43% 24% 13% 14%

450.soplex 86% 53% 34% 18% 22%

459.GemsFDTD 79% 56% 38% 24% 22%

470.lbm 76% 53% 35% 23% 23%

471.omnetpp 61% 48% 40% 28% 39%

geo. mean 75% 47% 30% 18% 20%

Workload Perf/TCO-$ improvement (%)

geo. mean 52% 29% 18% 11% 18%

TCO [127] / server = server + power (3yrs). server = $2,000,

power = (1 +K1 + L1 +K2 ∗ L1) ∗ U$,grid ∗ E.

K1/L1/K2 = 1.33/0.8/0.25, U$,grid = $0.08/kWh.

E = P * 24 hrs * 365 days * 3 yrs

Average power = P = 0.3 kW * (0.5 + 0.5∗CPU util.)

Table 5.2: Memcached tail latency and SPEC CPU2006 instruction throughput when co-located under a

range of memcached loads. Both memcached and SPEC run on all 24 threads of the server and are timeshar-

ing. For SPEC CPU throughput, all measurements are of instruction throughput normalized to the bench-

mark running alone. Perf/TCO-$ improvement compares co-location to operating distinct clusters for the

two workloads.

with load varying 0% to 100%), while concurrently running SPEC CPU2006 benchmarks on the same server

and measuring instruction throughput with Linux’s perf tool (normalized to the benchmark running alone).

We utilize the techniques discussed in Section 5.4 to minimize the interference between the co-located work-

loads. We use the results to calculate the utility of co-location under two different scenarios explained below.

5.5.1 Facebook Scenario

The first scenario represents the opportunity in companies like Facebook (see discussion in Section 5.2).

Memcached is deployed on a large number of dedicated servers that have long periods of underutilization

due to diurnal patterns and provisioning for spikes. We’d like to reclaim the unused server resources by also
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running other workloads (e.g., analytics) as background tasks. Memcached is the high priority workload and

there should be no impact on its QoS.

Table 5.2 presents the analysis, where the columns represent the memcached service load (as % of peak).

The top portion of the table shows the 95th-percentile latency of memcached with and without co-located

workloads. While this metric is affected by co-location, it never devolves into asymptotic queuing delay. If

the QoS constraint is 1msec, we can co-locate memcached with other workloads at any load. If the QoS

limit is 0.5msec, the most memory intensive workloads (470.lbm) can cause memcached to violate its QoS at

high load loads (90%). Hence, a conservative approach may be to disallow colocation in the rare case where

memcached reaches high levels of utilization.

The table also shows the performance achieved by the SPEC workloads. Since CPU utilization closely

matches memcached load, we’d ideally expect a co-located workload to achieve (100-M)% of its peak

throughput, where M% is the memcached load. However, SPEC workloads do not achieve ideal performance.

400.perlbench, for instance, only achieves 74.1% throughput when memcached is at 10% load. Curiously,

many workloads (i.e. 401.bzip2) achieve slightly higher throughput at 90% memcached load compared to

70% load. We measured substantially fewer context-switches at 90% load even though the request rate was

higher, indicating that memcached is servicing more requests per wakeup, and may be the result of interrupt

rate throttling by the Intel 10GbE NIC. This results in less time spent scheduling and context-switching and

fewer TLB flushes for the co-located workload.

Given the observations above, we calculate the benefit of co-location by comparing the TCO of a single

cluster co-locating both of these workloads vs. operating two separate clusters for the two workloads. For

the split scenario, we size the cluster for SPEC to match the SPEC throughput provided by the co-located

cluster. For instance, if we assume 12,000 servers for memcached and since 400.perlbench achieves 74.1%

throughput when co-located with memcached at 10% load, this throughput can be matched by 8,892 servers

dedicated to running 400.perlbench. For TCO, we use the methodology of Patel et al. [91, 127] to compute

the fully-burdened cost of power using the parameters in Table 5.2 and the assumptions that (1) server capital

cost is $2,000, (2) server power consumption scales linearly with CPU utilization, and static power is 50% of

peak power, (3) peak power consumption is 300W, and (4) datacenter PUE is 1.25. This methodology takes

into account the fact that a server operating at higher utilization consumes more power, hence it has higher

overall cost.

Despite the fact that SPEC workloads do not achieve ideal performance when co-located with mem-

cached, the TCO benefit of co-location in all cases is positive and substantial. When memcached operates

at 10% load, the co-located workloads achieve an average 75.4% of the throughput of an equivalent-sized

cluster (12,000 servers). To match this performance with a separate cluster, it would cost an additional 52%

increase in TCO, taking into account all capital and operational expenses. To put it differently, it is as-if we

achieve the capability of 9,048 servers running SPEC at a 34% discount (1- 1
.52+1

). Even at 90% load for

memcached, there is still a 18% TCO benefit to co-locating workloads.



CHAPTER 5. HIGH SERVER UTILIZATION AND SUB-MILLISECOND QUALITY-OF-SERVICE 100

Memcached QPS (% of peak)

50% 60% 70% 80% 90%

Workload Memcached 95th-% Latency (usecs)

none 156 176 210 250 360

400.perlbench 156 177 206 266 380

401.bzip2 156 181 213 268 402

403.gcc 162 183 217 282 457

410.bwaves 163 188 233 386 4703

416.gamess 154 173 204 252 364

429.mcf 186 228 318 4,246 6,775

433.milc 178 210 291 904 5,686

434.zeusmp 170 197 236 367 3,143

450.soplex 175 206 274 497 5,410

459.GemsFDTD 201 253 408 6,335 6,896

470.lbm 208 274 449 7,799 6,429

471.omnetpp 167 191 234 320 2,568

mix 157 199 207 334 4,711

L3 µbench 156 197 246 5,400 4,944

Workload CPU2006 Instr. per second (norm.)

400.perlbench 99% 98% 98% 98% 98%

470.lbm 91% 90% 89% 88% 89%

mix 98% 98% 98% 96% 94%

geo. mean 98% 97% 96% 97% 97%

Table 5.3: Memcached tail latency and SPEC CPU2006 instruction throughput when co-located on distinct

cores. Each workload gets half of the cores of the server. Memcached peak QPS is measured when running

alone on its half of the cores. Shaded cells indicate an unacceptable drop in QoS.

5.5.2 Google Scenario

In the second scenario, we assume an underutilized cluster similar to the 12,000-server cluster analyzed by

Reiss et al. [133] (20% CPU utilization, 40% memory utilization). We conservatively assume that half (50%)

of the CPU cores in the cluster are utilized running some primary workload and we would like to evaluate

the benefit of deploying memcached on the other available cores in order to take advantage of the ∼0.5 PB

of unallocated memory in the cluster.

Again, we evaluate the efficacy of co-location by comparing a co-located cluster to a pair of separate

clusters where one cluster runs the existing primary workload (SPEC workloads at 50% core utilization)

and the other cluster runs memcached. The impact on latency and throughput of co-location at various

memcached loads is presented in Table 5.3. For many workloads (perlbench, bzip2), the latency impact of

co-location is negligible. For others (lbm, mcf, etc.), substantial queuing delay is observed at loads above

70%, as previously seen in Sec. 5.3.2. Moreover, the SPEC workloads in some cases also see a moderate

slowdown (up to 12% for lbm). If we assume that 500 µsec 95th-% latency is the maximum latency we are

willing to tolerate from memcached, and 10% is the maximum slowdown we are willing to tolerate from
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the SPEC workloads, then the maximum memcached load we can provision for co-located servers is 60% of

peak (interference-aware provisioning).

Were we to build a separate memcached cluster to accommodate this load, we would allow memcached

to use all of the cores of those servers. Thus, we would need to increase the size of the cluster by an

additional 30%, optimistically assuming that performance scales linearly with cores. Put another way, if our

original cluster is 12,000 servers large and 50% is occupied with SPEC workloads, we can safely co-locate

up 3,600 servers worth of additional memcached load to serve unallocated memory, and guarantee good

quality of service for both workloads. Taking into account TCO and the pessimistic power assumption that

the memcached service is always at 100% load, the co-located cluster achieves 17% improvement in TCO

compared to two separate clusters with the same performance for the two workloads. Also note that the

Google cluster studied by Reiss et al. had 60% of memory unallocated; a separate memcached cluster of this

capacity would require 7,200 servers at substantially higher TCO.

5.6 Related Work

There have been several works addressing QoS for co-located workloads in warehouse-scale datacenters [26,

98, 99, 175, 176, 179]. Several of these, including Paragon, Bubble-Up, and Bubble-Flux, focus on iden-

tifying workloads which interfere with each other and avoiding co-locating them together. Our work is

distinct in that we (1) concretely describe how this interference manifests in a canonical low-latency work-

load, and (2) accommodate co-locations that may cause substantial interference by considering the overall

impact on load provisioning in our analytical study. Other works focus on minimizing latency or improv-

ing tail latency for specific low-latency services [75, 122]. They accomplish this by bypassing the OS and

using user-level network stacks, which complicates workload consolidation; these services would invariably

have low utilization during diurnal troughs, which is counter-productive for the goals of this work. Tessel-

lation [19] and Akaros [134] improve QoS in operating systems through radical changes to the kernel and

process abstractions. Our work instead delves deep into the challenge of co-locating workloads using exist-

ing OS abstractions, and presents specific examples of where the epoll interface and CFS fall short in Linux.

Pisces [149] presents a holistic solution to QoS for membase; however, they do not consider workload co-

location, just multi-tenancy for membase. Finally, hardware partitioning techniques have been studied for

caches [130, 141], hyper-threads [57], and memory channels [114, 119]. Those works are orthogonal to our

own.

5.7 Conclusions

In this paper, we address the conflict between co-locating workloads to increase the utilization of servers

and the challenge of maintaining good quality-of-service for latency-sensitive services. We showed that

workload co-location leads to QoS violations due to increases in queuing delay, scheduling delay, and thread
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load imbalance. We also demonstrated concretely how and why these vulnerabilities manifest in a canonical

low-latency service, memcached, and described several strategies to mitigate the interference due to them.

Ultimately, we demonstrated that latency-critical workloads like memcached can be aggressively co-located

with other workloads, achieve good QoS, and that such co-location can improve a datacenter’s effective

throughput per TCO-$ by up to 52%.



Chapter 6

Concluding Remarks

We conclude this dissertation with a discussion of the synergies amongst its contributions, an outline of future

work, and a brief summary.

6.1 Synergy Amongst Contributions

All of the techniques presented herein are orthogonal; none depends upon or precludes the application of

another. Indeed, the road forward to improve server power-efficiency will likely be a messy affair, requiring

innovation on several fronts, as the sources of inefficiency are myriad. There are, however, a handful of

synergies between the techniques we have proposed that merit attention.

First, aggressive application of per-core power gating (Chapter 3) leads to high utilization of some cores in

a multi-core server. If that server hosts latency-sensitive applications, this may lead to a degradation in quality

of service, even though the server still affords the same throughput. Such a degradation may be avoided,

however, if the techniques presented in Chapter 5 are applied. Thus, designing latency-sensitive services to

tolerate interference helps both to improve server utilization and to gracefully mitigate the inefficiency of low

utilization.

Similarly, aggressive power-down of servers in distributed file systems (Chapter 4) leads to higher utiliza-

tion of the remaining active servers. The performance consequences of this are less severe if those services

are designed with high utilization in mind (Chapter 5).

Finally, main memory rank subsetting unexpectedly improved performance for several multi-programmed

workloads (Chapter 2), despite the increase in memory access time it causes. This is due to the large number

of independent banks it exposes to the memory controller, which allows it to perform better memory ac-

cess scheduling. Should server utilization indeed increase due to workload co-location in future datacenters

(Chapter 5), memory systems with rank subsetting are both more power-efficient and more performant.

103
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6.2 Future Work

There are several opportunties for future work which builds upon the contributions of this dissertation. First,

even though per-core power gating is now commonplace in general-purpose CPUs, it is actuated using re-

active mechanisms (i.e. only gating core power after observing idleness). Consequently, it errs towards

preserving performance rather than improving power-efficiency. However, since the hardware is now readily

accessible, the opportunity exists to evaluate proactive policies, like our own, and provide empirical evidence

regarding their impact on performance and power-efficiency. Moreover, since the transition speed for PCPG

is faster than we anticipated, more aggressive policies than our own watermark policy can be implemented.

Such policies could even be integrated with the OS scheduler. The methodology is straight-forward: build a

power-measurement testbed to study a modern Nehalem-derived system and reimplement a controller for our

policy (or other, more aggressive policies). Then, measure the performance, quality-of-service, and power

consumption for a range of latency-sensitive and batch-oriented workloads which fractionally-utilize a server.

Second, our work on power-proportional Hadoop left many avenues for future exploration open. Indeed,

Rabbit [4] and GreenHDFS [76] largely address the data layout and data availability issues we identified

in Section 4.4, respectively. Other issues, however, remain unresolved. Most importantly, all related work

in this area has focused on block-based storage systems. None has, to our knowledge, evaluated dynamic

power management of higher-level storage systems, like HBase [5], BigTable [17], or similar column-oriented

distributed databases. Similar to Hadoop and HDFS, these systems are all designed to be tolerant of complete

server failure by migrating ownership of data among cluster nodes. However, the vast majority of nodes

are still expected to be available at all times, so this fault-tolerance does not lend itself to effective power

management. Thus, even if the servers are underutilized, they may not be gracefully quiesced. Future work

in this area should identify a set of design patterns or rules in order to enable effective power-management

of distributed services. Such patterns or rules should be advocated for existing and new data stores, or else

cluster-scale power management will remain impractical for datacenters which host significant amounts of

data.

Third, in our study of memcached, we identified that its static assignment of incoming connections to

server threads ultimately precipitated its intolerance to interfering workloads. There appears to be an oppor-

tunity here to study alternative software architectures for multi-threaded servers, and evaluate how well they

cope with different types of interference (i.e. load imbalance, co-scheduled tasks, etc.). Such architectures

might use forms of work stealing, connection stealing, or even a broker to assign requests to workers. Ulti-

mately, we would like to know if acceptable performance and quality of service can be achieved with current

system call interfaces (i.e. epoll, kqueue, /dev/poll, etc.), or if a new interface should be proposed. As the

pattern used by memcached is found in several other services (i.e. MySQL, REDIS, node.js, lighttpd, nginx,

etc.), the result of such a study would be broadly applicable.

Finally, in keeping with the tradition of contemporary Computer Architecture research, this dissertation

has treated all workloads “as given,” and evaluated how we can improve server power-efficiency without
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materially modifying them. This is a reasonable restriction, as it suggests that the solutions herein are general-

purpose and widely applicable. However, when semiconductor scaling has finally run its course and every

effort has been expended on optimizing the servers that workloads run on, the logical next step is to engineer

more power-efficient workloads. Thus, there will eventually be considerable future work in improving the

performance and power-efficiency of the storage systems, distributed processing frameworks, and user-facing

services of future datacenters.

6.3 Summary

We began this dissertation by arguing that future scaling of datacenter capability depends upon improvements

to server power-efficiency. The richness of contemporary online services is largely enabled by the amount

of brute computing power we are able to bring to bear in warehouse-scale datacenters. Without growth in

datacenter capability, such online offerings will stagnate. Even though there are viable ways to continue

growing datacenter capability today, they largely entail additional cost; it is almost as-if computing power is

a scarce natural resource which is becoming harder to come by. Thus, this dissertation proposed several novel

strategies to improve datacenter power-efficiency, so as to perpetuate the process of technological innovation

we are experiencing online today.

We have argued that future improvements to datacenter power-efficiency largely fit into three categories:

reductions in server dynamic power consumption, reductions in server static power consumption, and in-

creases to average server utilization. We then described in detail four proposals that span these categories:

a novel architecture for main memory modules that improves dynamic power consumption, a new control

mechanism for per-core power gating of multicore processors to reduce static power consumption, a modi-

fication to distributed file systems to ameliorate the inefficiency of underutilized clusters, and a blueprint to

maintain good quality of service on highly utilized servers.

All told, we have found that there exists considerable opportunity to improve the power-efficiency of

datacenters despite the failure of Dennard scaling. Through judicious focus on server power-efficiency, we

can stave off stagnation in the growth of online services or an explosion of datacenter construction, at least

for a time.
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