Reconciling High Server Utilization
and
Sub-millisecond Quality-of-Service

Jacob Leverich and Christos Kozyrakis,
Stanford University

EuroSys "14, April 14t", 2014

Server utilization is low

Amazon EC2 [Liu, CGC'11]

0.03 _ B Industry average [McKinsey’09]
|
0.025 1 (R
I (] [e [
g 00 1 | Capital-inefficient
© I y
c 0.015 I -
£ D
& 001 1 : ation at Google
" 1 Power-inefficient o and Holze, 2007]
0.005 |
I M
0
00 01 02 03 04 05 06 07 08 09 1.0

CPU utilization

Why so low?

e Diurnal variation
e Capacity for future growth, unexpected spikes
* Server/workload mismatch

Simple solution:
Cluster Consolidation

Two consolidation examples

* Analytics cluster with unused memory

70%

~

J

-

Memcached? “

Cores

Memory

e Memcached cluster with unused CPU

30%

~

Analytics?

J

{ 85%

L

Cores

Memory

Consolidation =2 Poor Performance &
Quality of Service

* Interference on shared resources
— Cores, caches, memory, storage, network
— QoS violations in low-latency applications

e Latency correlated with revenue [Mayer’06]

e Simple solutions lead to low-utilization

— Don’t co-locate work with low-latency services
— Inflate reservations to reduce co-located jobs

Can we reconcile high utilization and
good quality of service?

Project MUTILATE:
More Utilization
with Low Latency

Contributions

* |dentified key QoS vulnerabilities for sub-millisecond services
— Queuing delay, scheduling delay, thread load imbalance

* Developed best practices to maintain good QoS

1 — Queuing delay: Interference-aware provisioning
!_ — Scheduling delay: Use alternatives to CFS [

— Thread load imbalance: Dynamically share connections/requests
[or pin threads]

— Network interference: NIC receive-flow steering

e 17-52% reduction in TCO with good QoS despite interference

Focused on memcached

Low nominal latency: 100s of usecs
Sensitive to interference

Good example of an event-based service
— Arch. shared by REDIS, node.js, lighttpd, nginx, etc.

Focus on interference due to consolidation

— Ilgnore misbehaving clients, large requests, etc.
[Shue, OSDI'12, “Pisces”]

8 Kernel

NIC "\ switch

2

dl/dD1

911IM @

GET foo

Life of a memcached request

1D

11 User

wanaql [S

lod3 (@)

9INpayYds/ oo
91eAndy / I~

dl/dDJl | ©

x
o

JEVVEIS

VALUE foo
bar

Moo

wire

wireqswitch N> NIC

31D

END

QoS vulnerabilities

k5
c ©
v @ ° ., o
- 2 @ E = = 8 ' Kernel
B get FOO =« 2 3 F XX (9) syscal
e % sca
g———> NIC | 10@ 12 @I 14 15 | NIC | Y
‘\~~ _A 11) User

~19-21usecs (unloaded)

* Queuing delay
— Function of load and service time

* Scheduling delay
— Wait time and context switch latency

10

Let’s capacity plan a cluster

* Want to support 1B queries/sec total

— Accounts for diurnal variation, unexpected spikes
(worst-case peak)

— Must maintain low latency

* How many servers do we need?

Provisioning for Quality of Service

~1M QPS
A
1000 I
Average - I \
900 5
95th-% | I |
800 i ' l
__ 700 :
g For 1B QPS we need I , ’
2 1,000 servers @ 1M QPS I | I
-~]
> 500 i)
: A)/
= 400 I \ /
S8
200 :
100 i
0 |
|
og\o cg\o '\/bo‘\o '{g\o ,-1?0‘\0 O’Qo\o r;)(’?\o b"\’o\o b‘(8\0 & \'o\o <’;\o\o 3 ’\3\0 Q)cg\o A og\o /\qg\o q)bo‘\o q)o?\o Cgg\o'\ggo\o

Memcached QPS (% of peak)

Provisioning for Quality of Service

Histogram of CPU utilization @ Google [Barroso’07]
|

| == Average I <
- (@)

= = 95th-%

1000
900
800
700
600
500

pPauoISINOAd

SdD
~4

.'
l
|

]

kpare capacity! | /|
ake use of it? /:/
|

—"’

400
300
200
100 -

Latency (usecs)

o oo oo oo oo oo o oo oo oo oo ol oo G oo oo s oo gl

o\ \

Memcached QPS (% of peak)

Cluster consolidation

* Memcached cluster
— 1,000 servers, 30% nominal load

* Analytics cluster
— 1,000 servers, 50% load, best-effort batch jobs

 Can we combine this capacity?

— Must ensure we don’t disturb provisioned QoS
for the memcached server

700

600

500

S
o
o

w
o
o

Latency (usecs)

200

100

Latency @ 80% QPS
Baseline (no interference)

Tr

'T"'H".f.'". 'le’rﬂ“.“l'l'“lr' W I | i B o Y 9'5:2'

Time (20 seconds)

15

Latency @ 80% QPS
with 471.omnetpp

4000 — Can’t maintain QoS we provisioned for.
This is why workload consolidation is dangerous!

O w,. (Wl
(i Ll

Latency (usecs)

Time (20 seconds)

Related work

* CPI?[EuroSys’13]
— Punish workload causing interference

* Bubble-Up, Paragon [MICRO’11, ASPLOS’13]

— Identify or predict workloads that interfere,
don’t consolidate

* Manage symptoms, don’t address causes

Latency with heavy L3 interference

Latency (usecs)

1000
900
800
700
600
500
400
300
200

100 -

0

|
«===Average : A .'
- a» _0, z
95th-% i o ’
E [
Q]
.
=1
wn /
i

do oo o oo oo o oo oo oo oo oo oo oo s oo o

DA D D 0 ST E P @A A P DS

olo

]

oo olo

Memcached QPS (% of peak)

18

Latency with heavy L3 interference

Latency (usecs)

1000
900
800
700
600
500
400
300
200
100

gl
]
S
: E—
o
L] v
Average © g 13 h
= = 95th-% o 1S |
=== Average (w/ L3 int.) : 11)112 I g J
i I_m—'_ -
= = 95th-% (w/ L3 int.) M e I g— !
“10usecs 15/
~16usecs i

|

o\o
oD AP

o o oo oo oo oo oo oo do oo oo oo oo

Memcached QPS (% of peak)

19

Latency with heavy L3 interference

Latency (usecs)

1000
900
800
700
600
500
400
300
200
100

|
«====Average : S ,'
= = 95th-% 1S |
e Average (w/ L3 int.) ! g !
=]
= = 95th-% (w/ L3 int.) 1= /!
l et [4 T
12
i y J

|

oo o o oo oo oo oo oo oo do oo oo oo oo

Memcached QPS (% of peak)

20

Interference-aware provisioning

* Insight
— Can live with interference, not queuing delay
— Provisioning at 80% QPS gave us no margin of error

e Reprovision memcached cluster (60% QPS / server)
— 1,300 servers for 1B QPS
— Immune to cache interference, free to co-schedule jobs

— Plenty of spare capacity for analytics cluster workload
(1,000 servers, 50% load)

e Combined 1,300 servers now at 60% nominal utilization
— Achieve good QoS with interference, even at peak!

— 33% fewer servers overall,
23% less power consumption,
17% improvement in TCO

Latency @ 60% QPS
with 471.omnetpp

Latency (usecs)
N9
o
o
o

Time (20 seconds)

22

Scheduling delay

e Consolidated cluster (memcached + analytics)
— Analytics = “best effort”, only use spare CPU time
— Only worry about context switch latency

Time-sharing with memcached

1000
900

Core

800

600

L
[]
e
L
700 ®
[
L
500 ®

°
400
4

300 @
o
Py o
o0 *®
o000 o0 0O ® o o o \lemcached alone

NIC

95th-% Latency (usecs)

200
100 @

0
3% 13% 23% 33% 44% 54% 64% 74% 85% 95%

Memcached QPS (% of Peak)

Time-sharing with memcached

1000

900 Core

800 /
700
600 \—l

500

400

200
100

95th-% Latency (usecs)

® o o o \lemcached alone

@ 100.perlbench
0
3% 13% 23% 33% 44% 54% 64% 74% 85% 95%

Memcached QPS (% of Peak)
e Context switch doesn’t add any latency!

25

Time-sharing with memcached

1000
900 ® o @ o \[emcached alone
800 400.perlbench
‘5 410.bwaves
(]
g 700 416.gamess
‘9:>’. 600 429.mcf
% 500 433.milc
Q 400 459.GemsFDTD
o
..'é 300 450.soplex
471.omnetpp
100 401.bzip2
0 403.gcc
3% 13% 23% 33% 44% 54% 64% 74% 85% 95%
434.zeusmp

Memcached QPS (% of Peak)

* Context switch doesn’t add any latency
* |nsensitive to workload

Scheduling delay

e Consolidated cluster (memcached + analytics)
— Analytics = “best effort”, only use spare CPU time
— Only worry about context switch latency

* No worries!

* Co-scheduling low-latency applications

— i.e. memcached + 1ms RPC service

27

CFS can’t guarantee low latency

Achieved QoS w/ two low-latency workloads

Bad QoS with minor . Both meet QoS

interference! 1ms service fails

Memcached fails
Both fail to meet QoS

QoS requirement
= 95th < 5x |ow-load 95t

Memcached Load (% Peak QPS)

10 20 30 40 50 60 70 80 90

1ms RPC-service Load (% Peak QPS)

28

Time-sharing with a periodic task

* Periodic task runs 6ms every 48ms (12% load)

— 50/50 CPU share M ﬂ

12000

10000

(0]
o
o
o

6000

4000

95th-% Latency (usecs)

2000

=== NO interference

=== |nterference w/ CFS

1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
+
1
/ i
! :
. ° 1
| uge QoS violations, |
! ven at low load! i
1
XX RN X X XXX

29

CFS: Completely Fair Scheduler

e Tasks sorted by runtime along a timeline
— Run the earliest task whenever you reschedule
— When a task T wakes up, assign its runtime as:

runtime(T) = max(min(runtime(*)) -@untime(T))
i

Good for desktop
Bad for datacenters!

s by default!

30

-

time ———>

Square

Memclached

(Vs)
L
@)
S 3
s >
2 O
...alun
am
» Q2
C o
o I
Z £
ﬁ
o O o o o o
o O O o o o
o o o o o o
N O ©o0 OO @< 9909«
-

(saasn) Aduaie] %-yise

Memcached QPS (% of Peak)

31

-

time ———>

Memclached

Square

12000

=== NO interference

)
c
OI.
QUd
C @©
o =2
> 3
» w0
O o —
5 O%®
")
S o S
v S S
o T o
) [
= a1
\
_ N
(@] (@] o (@] (@]
(@) o (@) o o
o o (@) o o
m o0 (o} < o

(saasn) Aduaie] %-yise

Memcached QPS (% of Peak)

32

BVT: Borrowed virtual time [Duda’99]

e Same basic principle as CFS, plus
— Assign each task a “warp” value
— Schedule based on “effective” runtime:

effective runtime(T) = runtime(T) — warp(T)

B
A’ A B’ time

warp(A) > L ' , Task A not interrupted by B waking up
L . .
* Shoristerm preemption bias
* Long-term throughput fairness

BVT: Borrowed virtual time [Duda’99]

* Periodic task runs 6ms every 48ms (12% load)
— 50/50 CPU share

12000)
=== NO interference

10000 === |nterference w/ CFS

91YS|%0S

=== |nterference w/ BVT

i
1
1
1
: 1
) | |
3 : |
3 8000 i t
> : :
9 1 1
S 6000 1 i
T I |
=3 : !
°\° [] [] I
% 4000 —Ng@QoS violations | i
- 1
N . 1 1
(o)) 1
>000 . af fair load : |
_____ . |
- 1
P 4
of +
\§~O\° X XN XX XX XX R § § §’ o\L; X XN X X
B X3 35038 RERERS
(o}

34

BVT: Good QoS for both services

Achieved QoS w/ two low-latency workloads

90 . Both meet QoS
80 1ms service fails
70 Memcached fails

60
50
40
30
20
10

Both fail to meet QoS

QoS requirement
= 95th < 5x |ow-load 95t

Memcached Load (% Peak QPS)

10 20 30 40 50 60 70 80 90

1ms RPC-service Load (% Peak QPS)

35

BVT patch to Linux 3.5.0

* Simple extension to CFS

* Implemented at container group level
— Warp specified per cgroup in cgroupfs
— Defaults to normal CFS behavior

* https://gist.github.com/leverich/5913713

include/linux/sched.h | 8 ++++++
init/Kconfig
kernel/sched/core.c

| 14 +++++trt

|
kernel/sched/fair.c |

|

|

31 ++++++++++HH+HH

93 ++++++++++++++HHHH R
+++++++HHH - - -

kernel/sched/features.h 2 ++
kernel/sched/sched.h 4 +++
kernel/sysctl.c | O t+++++

7 files changed, 158 insertions(+), 3 deletions(-)

Contributions

* |dentified key QoS vulnerabilities for sub-millisecond services
— Queuing delay, scheduling delay, thread load imbalance

* Developed best practices to maintain good QoS

F
1 — Queuing delay: Interference-aware provisioning
I — Scheduling delay: Use alternatives to CFS [

— Thread load imbalance: Dynamically share connections/requests
[or pin threads]

— Network interference: NIC receive-flow steering

* Question: “Can we reconcile high utilization and
good quality of service?”

37

Contributions

* |dentified key QoS vulnerabilities for sub-millisecond services
— Queuing delay, scheduling delay, thread load imbalance

* Developed best practices to maintain good QoS

— Queuing delay: Interference-aware provisioning
e oinedulingdelay: _ _ _ _Use alternatives t0 CES | o o o o o o
: — Thread load imbalance: Dynamically share connections/requests |
I [or pin threads] :
I — Networkinterference: NIC receive-flow steering i

* Question: “Can we reconcile high utilization and
good quality of service?”

38

Thanks!

40

Backup Slides

Mutilate:

A memcached load generator
http://github.com/leverich/mutilate

Distributed and epoll-based
High performance (millions of QPS)
Arbitrary intertransmission dist. (QPS control)

Latency sampled at 1 kHz by independent open-loop
connections (no client-side queuing delay due to load
generation), UDP or TCP

Arbitrary value/key size distributions (can replay
“Workload Analysis of a Large-Scale Key-Value
Store” [Atikoglu et al., SIGMETRICS’12])

Time-sharing a core

— Memcached runs often enough to keep cache
warm

— TLB flush has minimal impact

Only part affected

Memcached CPU time by TLB flush

SoftIRQ
31%

43

—_
o

o
o

portion of CPU

—_
o

o
o

portion of memory

o

12,000-node Google cluster
[Reiss, SOCC'12]

I |

used

! I

HitrrrrrrerrreerrreerrreerrrerrrrrrrrrinlH

~#50, top SC list

Bl .
y

j 7

allocated

T | R
0 |1}

Wl Bahoa o aen o Ahean M o o a
i “_\ “-""'-"I m,\‘ "]__ ‘ M 4, "nnl_._i"».--'““‘ I-; i y 1 ml) 4 "‘ “»», ‘-1_‘1 s 1 n"'l‘ "-‘fﬂ
IIIIIIIIIIIIIIIIIIIIIII"IIIIIII‘-._l'lIIIIIi‘III]

Resenvation >2x too high

HitrrrrrrerrreeerreerrreerrrerrrrrrrrrinlH

~0.5 PB of memory

PR, N T ; ey
il Ii'N“U | N ,‘hlh‘_.-.f N (2l s i, i aadhdi | L |:‘W_‘ sl e Lo gl g

10

15 20 25

oRR U NNRRR NN RR NN ERRRNT Y ARRT ERAVRIINRY
s ‘-hfzhlw A O a0 S0, (AR wy

1 a0 19 of0J N
L],\ ¢

0 D

10

15 20 25

time (days)

44

Co-scheduled task incurs the overhead

Performance of background task

0.4
o 0.35 = :
e 03 8, Better trade-off than 3x over-reservation
c 0. =N
: 2
L 0.25 -
@ 2
& 0.2 -
©
()]
= 0.15
©
€ 01 -
2

0.05 -

O -
& \\Qjo W &2 Q
Qo ¢ Q Qo ¢ R
& & @ @’% 03”50 & »’f’ ' x\’x O ‘g‘Q N
™ © ke

45

Low utilization outside Google

Mozilla: 10%

McKinsey '08: Industry-wide ~6%
Gartner "10: Industry-wide 12%
Tata [HPCA’10]: 12.5%

Amazon [Liu CGC'11]: 7.3%

Diurnal variation at Facebook [Atikoglu’12]

ETC 24 hours

75000

70000 |

65000 [r

60000
55000 r

09s/s)sonbay

50000 r

45000

40000

35000

1 00:00

00:€¢

| 002z

00:1¢

| 00:02

00:61

| 00:8

00:41

| 00:91

00:G1

| 001

00-€1

| 00:z)

00-L1

| 00:01

00:60

| 00:80

00:20

| 00:90

00:90

| 0050

00:€0

| 00:20
] 00110

00-00

47

Queuing Delay

« Systemtap to trace kernel/memcached at runtime
— We track individual connections to record per-request latency

who st | Lowioa | _overoas
RX

0.9us

TCP/IP 4.7us

epoll() return 3.9us

libevent 2.4us

Server

read() call/ret 2.5us
memcached 2.5us

write()+TX 4.6us

Client End-to-End 49.8us 6011us

48

Queuing Delay

« Systemtap to trace kernel/memcached at runtime
— We track individual connections to record per-request latency

wno ——Lwnat | lowioas| _overios
RX 0.9us lus
TCP/IP 4.7us 4us
epoll() return 3.9us 2778us \Queue #1: Epoll ready list
libevent 2.4us Queue #2: Libevent
SEIED read() call/ret 2.5us 5us internal event list
memcached 2.5us 2us
write()+TX 4.6us 4us

5872us

Client End-to-End 49.8us 6011us

49

Latency with heavy L3 interference
(Who |What | Lowload| Overload | +L3Int.
RX lus lus

0.9us
TCP/IP 4.7us 4us 4us
epoll() return 3.9us 2778us 3780us
libevent 2.4us 3074us 454
Server
read() call/ret 2.5us 5us
memcached 2.5us 2us
write()+TX 4.6us 4us
5872us | 8349us
) End-to-End 49.8us 6011us 8460us
Client
TX-to-RX 36us

Switch RX-to-TX 3us

50

Systemtap

* Kprobe-based dynamic instrumentation of
Linux kernel (like DTrace)

probe kernel.function(
"tcp rcv_established@net/ipv4/tcp input.c”
) .return {

tstamps[$sk, "tcpip rx"] = gettimeofday ns()

Multi-queue NICs: Receive-Side Scaling

App A App A App B App B
[Core 1l } L Core 2 } L Core 3 } [Core 4 }

N\

[RX hash] 1. Cache misses and IPI
2. Collateral damage
from interrupt

NIC

Network interrupt interference

Memcached QPS loss
due to concurrent
network traffic

NIC Configuration 1Gbps

Receive-side scaling (rx hashing) 24%

e Memcached on socket #1, D-ITG on socket #2

 Multi-queue NICs with receive-side scaling spray
interrupts across all cores

— Necessary to handle 10GbE packet rates
— Can cause massive interference, even at low B/W

Receive-Flow Steering

App A App A App B App B

[s

[RX hash] 1. Few cache misses
2. No collateral damage

NIC

Receive-flow steering

Memcached QPS loss

NIC Configuration 1Gbps

o . . . due to concurrent
Receive-side scaling (rx hashing) 24% network traffic
Receive-flow steering (rx follows tx) 1%

e Largely mitigated by receive-flow steering
— Send interrupts to the core responsible for a flow
— QoS benefits unreported in literature

 Available in Mellanox and Intel NICs

— Intel’s IXGBE driver implements “RX follows TX” policy
(not in mainline Linux)

Problems with static connection
assignment

* Queuing delay due to...
— Unbalanced # of clients
— Hot/cold clients
— Unbalanced CPU performance (i.e. cache int.)

* Scheduling delay due to...
— Co-scheduled work
— Mismatched # of threads and CPUs

* Tail latency suffers if only one thread affected!

Latency (usecs)

Latency with # threads = # cores + 1

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Latency vs. QPS (# threads = # cores + 1)

e===TCP (95th-%)
= = TCP (50th-%)

At least one core has
>1 thread at all times!

50,000
100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000

1,000,000

Memcached QPS

57

Same result with # threads = # cores!

Latency vs. QPS (# threads = # cores)

18888 ——TCP (95th-%)
= = TCP (50th-9
8000 CP (50th-%)
8 7000
m . L] o L3
2 5000 Occasionally to spurious thread migration!
> 5000 2 threads on 1 core, —affine wakeups, p
§ 4000 only impacts tail latency yakeup load balancing,
3 3000 vackground daemons)
2000 y,
1000 ’
--------,
O ab G G T
O O O O O O O O O O O o o o o o o o o o
O O O O O O O 0O 0O O O o o o o o o o o o
© Q Q © © Q Q@ © © © 9 o © 9 Q@ e © 9 Q
O O O O O O O 0O O O O oo o o o o o o o o
n O n O n O n O n O n O n O n O n O n o
— — (@] (@] Mm o < < (Tp] n O O N~ N~ 0 o0 O O q
i

Memcached QPS

58

Pin threads to prevent migrations

10000
7 9000
@ 8000
< 7000
S 6000
2 5000
g 4000
= 3000
& 2000
1000

0

Latency vs. QPS (# threads = # cores)

===TCP
===TCP+Pin

Pin = sched_setaffinity() to
assign threads to specific cores

50,000
100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000
500,000
550,000
600,000
650,000
700,000
750,000
800,000
850,000
900,000
950,000

1,000,000

Memcached QPS

59

Interesting UDP behavior

Latency vs. QPS (# threads = # cores)

10000 —TCP
7 0% | —1cppi
[72]
2 7000 JbP
>
§ 2888 Most load generated w/ TCP,
5 4000 UDP latency sampled at 1kHz
f\; 3000 - (dozens of UDP client conns.)
in 2000
1000

0

50,000
100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000
500,000
550,000
600,000
650,000
700,000
750,000
800,000
850,000
900,000
950,000

1,000,000

Memcached QPS

60

Latency (usecs)

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Interesting UDP behavior

Latency vs. QPS (# threads = # cores + 1)

===TCP (95th-%)
= = TCP (50th-%)
UDP (95th-%)

At least one core has
>1 thread at all times!

)

&

I) PR pppe—p—p— 1 —/
© O O O O O O O O O O O O o o o o o o o
© O O O O O 0O O O 0O O O O oo o o o o o o
8383883838388 88388¢3 838
O O O O O O O O O O O o O o o o o o o o
n o n o n o n O n o n O Nn O Mn O n o um o
HHNNmm##LﬂMKDKDI\I\OOOOO\O\q
i

Memcached QPS

61

Memcached UDP handling

o >

Epoll Set | Epoll Set | | Epoll Set | | Epoll Set

Listen Worker Worker Worker Worker
Thread Thread Thread Thread Thread

[o

* Dynamically load balanced!

 Poor QPS due to lock contention on UDP socket
— Multiple UDP sockets might reintroduce QoS problem

More Related Work

* Deadline scheduling
— Liu and Layland [JACM’1973], seminal results

— AQuoSA [SPE’08], EDF w/ dynamic reservations,
SCHED DEADLINE

— We should schedule events, not processes!

* Ultra-low latency services
— RAMCloud [OSR’10], Chronos [SOCC’'12]
— User-level networking, bypass OS!
— Must reconcile provisioned vs. nominal QPS

Consolidation related work

 Don’t run interfering jobs together
— Bubble-Up [Mars, MICRO’11]
— Paragon [Delimitrou, ASPLOS’13]
— Don’t address the root cause of QoS problems

 Network QoS: HULL [NSDI'12]

 Hardware interference mitigation
— Vantage [Sanchez, ISCA’11]
— SMT QoS [Herdrich, HotPar’12]
— Reduce amount of interference, don’t eliminate

Partition/Aggregate Workloads

Query: “Funniest movie ever”

Clueless (0.6)

Data Data Data Data

IH

Overall latency dominated by the “tai
Long latency = lost revenue

Feature

Other schedulers do better

Completely Fair POSIX Realtime BVT [Duda’99]
Scheduler + Bandwidth Limit + Grace Period

Reservations

Configurable
preemption

Work
conserving

Achieved QoS with 2 low-latency tasks

Memcached

2

1ms latency-sensitive task
66

Alternative event-handling paradigms

* Sockets shared across event sets
— Be mindful of socket lock contention...
— Thundering herd; don’t put socket in EVERY set
* Event sets shared across threads
— Edge-triggered or EPOLL_ONESHOT to avoid thundering herd
— Not supported by libevent
— Be mindful of event set lock contention...

* Connection stealing/load balancing
— Pisces [Shue et al., OSDI'12]

* Event stealing

— Maintain thread-safe queue of events returned by epoll_wait()
— Steal events from neighbors when idle

* Comparison = future work ©

fini

