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Server utilization is low

Amazon EC2 [Liu, CGC'11]
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Why so low?

e Diurnal variation
e Capacity for future growth, unexpected spikes
* Server/workload mismatch

Simple solution:
Cluster Consolidation



Two consolidation examples

* Analytics cluster with unused memory
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Consolidation =2 Poor Performance &
Quality of Service

* Interference on shared resources
— Cores, caches, memory, storage, network
— QoS violations in low-latency applications

e Latency correlated with revenue [Mayer’06]

e Simple solutions lead to low-utilization

— Don’t co-locate work with low-latency services
— Inflate reservations to reduce co-located jobs



Can we reconcile high utilization and
good quality of service?

Project MUTILATE:
More Utilization
with Low Latency



Contributions

* |dentified key QoS vulnerabilities for sub-millisecond services
— Queuing delay, scheduling delay, thread load imbalance

* Developed best practices to maintain good QoS

1 — Queuing delay: Interference-aware provisioning
!_ — Scheduling delay: Use alternatives to CFS [

— Thread load imbalance: Dynamically share connections/requests
[or pin threads]

— Network interference: NIC receive-flow steering

e 17-52% reduction in TCO with good QoS despite interference



Focused on memcached

Low nominal latency: 100s of usecs
Sensitive to interference

Good example of an event-based service
— Arch. shared by REDIS, node.js, lighttpd, nginx, etc.

Focus on interference due to consolidation

— Ilgnore misbehaving clients, large requests, etc.
[Shue, OSDI'12, “Pisces”]
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QoS vulnerabilities
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* Queuing delay
— Function of load and service time

* Scheduling delay
— Wait time and context switch latency
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Let’s capacity plan a cluster

* Want to support 1B queries/sec total

— Accounts for diurnal variation, unexpected spikes
(worst-case peak)

— Must maintain low latency

* How many servers do we need?



Provisioning for Quality of Service

~1M QPS
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Provisioning for Quality of Service

Histogram of CPU utilization @ Google [Barroso’07]
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Cluster consolidation

* Memcached cluster
— 1,000 servers, 30% nominal load

* Analytics cluster
— 1,000 servers, 50% load, best-effort batch jobs

 Can we combine this capacity?

— Must ensure we don’t disturb provisioned QoS
for the memcached server
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Latency @ 80% QPS
with 471.omnetpp

4000 — Can’t maintain QoS we provisioned for.
This is why workload consolidation is dangerous!
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Related work

* CPI?[EuroSys’13]
— Punish workload causing interference

* Bubble-Up, Paragon [MICRO’11, ASPLOS’13]

— Identify or predict workloads that interfere,
don’t consolidate

* Manage symptoms, don’t address causes



Latency with heavy L3 interference
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Latency with heavy L3 interference

Latency (usecs)
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Latency with heavy L3 interference
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Interference-aware provisioning

* Insight
— Can live with interference, not queuing delay
— Provisioning at 80% QPS gave us no margin of error

e Reprovision memcached cluster (60% QPS / server)
— 1,300 servers for 1B QPS
— Immune to cache interference, free to co-schedule jobs

— Plenty of spare capacity for analytics cluster workload
(1,000 servers, 50% load)

e Combined 1,300 servers now at 60% nominal utilization
— Achieve good QoS with interference, even at peak!

— 33% fewer servers overall,
23% less power consumption,
17% improvement in TCO
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Scheduling delay

e Consolidated cluster (memcached + analytics)
— Analytics = “best effort”, only use spare CPU time
— Only worry about context switch latency



Time-sharing with memcached
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Time-sharing with memcached
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Time-sharing with memcached
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* Context switch doesn’t add any latency
* |nsensitive to workload



Scheduling delay

e Consolidated cluster (memcached + analytics)
— Analytics = “best effort”, only use spare CPU time
— Only worry about context switch latency

* No worries!

* Co-scheduling low-latency applications

— i.e. memcached + 1ms RPC service
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CFS can’t guarantee low latency

Achieved QoS w/ two low-latency workloads

Bad QoS with minor . Both meet QoS

interference! 1ms service fails

Memcached fails
Both fail to meet QoS

QoS requirement
= 95th < 5x |ow-load 95t

Memcached Load (% Peak QPS)

10 20 30 40 50 60 70 80 90

1ms RPC-service Load (% Peak QPS)
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Time-sharing with a periodic task

* Periodic task runs 6ms every 48ms (12% load)

— 50/50 CPU share M ﬂ
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CFS: Completely Fair Scheduler

e Tasks sorted by runtime along a timeline
— Run the earliest task whenever you reschedule
— When a task T wakes up, assign its runtime as:

runtime(T) = max(min(runtime(*)) -@untime(T))
i

Good for desktop
Bad for datacenters!

s by default!
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BVT: Borrowed virtual time [Duda’99]

e Same basic principle as CFS, plus
— Assign each task a “warp” value
— Schedule based on “effective” runtime:

effective runtime(T) = runtime(T) — warp(T)

B
A’ A B’ time

warp(A) > L ' , Task A not interrupted by B waking up
L . .
* Shoristerm preemption bias
* Long-term throughput fairness



BVT: Borrowed virtual time [Duda’99]

* Periodic task runs 6ms every 48ms (12% load)
— 50/50 CPU share
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BVT: Good QoS for both services

Achieved QoS w/ two low-latency workloads

90 . Both meet QoS
80 1ms service fails
70 Memcached fails
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QoS requirement
= 95th < 5x |ow-load 95t
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BVT patch to Linux 3.5.0

* Simple extension to CFS

* Implemented at container group level
— Warp specified per cgroup in cgroupfs
— Defaults to normal CFS behavior

* https://gist.github.com/leverich/5913713

include/linux/sched.h | 8 ++++++
init/Kconfig
kernel/sched/core.c

| 14 +++++trt

|
kernel/sched/fair.c |

|

|

31 ++++++++++HH+HH

93 ++++++++++++++HHHH R
+++++++HHH - - -

kernel/sched/features.h 2 ++
kernel/sched/sched.h 4 +++
kernel/sysctl.c | O t+++++

7 files changed, 158 insertions(+), 3 deletions(-)



Contributions

* |dentified key QoS vulnerabilities for sub-millisecond services
— Queuing delay, scheduling delay, thread load imbalance

* Developed best practices to maintain good QoS

F
1 — Queuing delay: Interference-aware provisioning
I — Scheduling delay: Use alternatives to CFS [

— Thread load imbalance: Dynamically share connections/requests
[or pin threads]

— Network interference:  NIC receive-flow steering

* Question: “Can we reconcile high utilization and
good quality of service?”

37



Contributions

* |dentified key QoS vulnerabilities for sub-millisecond services
— Queuing delay, scheduling delay, thread load imbalance

* Developed best practices to maintain good QoS

— Queuing delay: Interference-aware provisioning
e oinedulingdelay: _ _ _ _Use alternatives t0 CES | o o o o o o
: — Thread load imbalance: Dynamically share connections/requests |
I [or pin threads] :
I — Networkinterference: NIC receive-flow steering i

* Question: “Can we reconcile high utilization and
good quality of service?”
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Thanks!
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Backup Slides



Mutilate:

A memcached load generator
http://github.com/leverich/mutilate

Distributed and epoll-based
High performance (millions of QPS)
Arbitrary intertransmission dist. (QPS control)

Latency sampled at 1 kHz by independent open-loop
connections (no client-side queuing delay due to load
generation), UDP or TCP

Arbitrary value/key size distributions (can replay
“Workload Analysis of a Large-Scale Key-Value
Store” [Atikoglu et al., SIGMETRICS’12])



Time-sharing a core

— Memcached runs often enough to keep cache
warm

— TLB flush has minimal impact

Only part affected

Memcached CPU time by TLB flush

SoftIRQ
31%
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Co-scheduled task incurs the overhead

Performance of background task
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Low utilization outside Google

Mozilla: 10%

McKinsey '08: Industry-wide ~6%
Gartner "10: Industry-wide 12%
Tata [HPCA’10]: 12.5%

Amazon [Liu CGC'11]: 7.3%



Diurnal variation at Facebook [Atikoglu’12]

ETC 24 hours
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Queuing Delay

« Systemtap to trace kernel/memcached at runtime
— We track individual connections to record per-request latency

who st | Lowioa | _overoas
RX

0.9us

TCP/IP 4.7us

epoll() return 3.9us

libevent 2.4us

Server

read() call/ret 2.5us
memcached 2.5us

write()+TX 4.6us

Client End-to-End 49.8us 6011us
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Queuing Delay

« Systemtap to trace kernel/memcached at runtime
— We track individual connections to record per-request latency

wno ——Lwnat | lowioas| _overios
RX 0.9us lus
TCP/IP 4.7us 4us
epoll() return 3.9us 2778us \Queue #1: Epoll ready list
libevent 2.4us Queue #2: Libevent
SEIED read() call/ret 2.5us 5us internal event list
memcached 2.5us 2us
write()+TX 4.6us 4us

5872us

Client End-to-End 49.8us 6011us

49



Latency with heavy L3 interference
(Who  |What | Lowload| Overload | +L3Int.
RX lus lus

0.9us
TCP/IP 4.7us 4us 4us
epoll() return 3.9us 2778us 3780us
libevent 2.4us 3074us 454
Server
read() call/ret 2.5us 5us
memcached 2.5us 2us
write()+TX 4.6us 4us
5872us | 8349us
) End-to-End 49.8us 6011us 8460us
Client
TX-to-RX 36us

Switch RX-to-TX 3us
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Systemtap

* Kprobe-based dynamic instrumentation of
Linux kernel (like DTrace)

probe kernel.function(
"tcp rcv_established@net/ipv4/tcp input.c”
) .return {

tstamps[$sk, "tcpip rx"] = gettimeofday ns()



Multi-queue NICs: Receive-Side Scaling

App A App A App B App B
[ Core 1l } L Core 2 } L Core 3 } [ Core 4 }

N\

[RX hash] 1. Cache misses and IPI
2. Collateral damage
from interrupt

NIC



Network interrupt interference

Memcached QPS loss
due to concurrent
network traffic

NIC Configuration 1Gbps

Receive-side scaling (rx hashing) 24%

e Memcached on socket #1, D-ITG on socket #2

 Multi-queue NICs with receive-side scaling spray
interrupts across all cores

— Necessary to handle 10GbE packet rates
— Can cause massive interference, even at low B/W



Receive-Flow Steering

App A App A App B App B

[ s

[RX hash] 1. Few cache misses
2. No collateral damage

NIC



Receive-flow steering

Memcached QPS loss

NIC Configuration 1Gbps

o . . . due to concurrent
Receive-side scaling (rx hashing) 24% network traffic
Receive-flow steering (rx follows tx) 1%

e Largely mitigated by receive-flow steering
— Send interrupts to the core responsible for a flow
— QoS benefits unreported in literature

 Available in Mellanox and Intel NICs

— Intel’s IXGBE driver implements “RX follows TX” policy
(not in mainline Linux)



Problems with static connection
assignment

* Queuing delay due to...
— Unbalanced # of clients
— Hot/cold clients
— Unbalanced CPU performance (i.e. cache int.)

* Scheduling delay due to...
— Co-scheduled work
— Mismatched # of threads and CPUs

* Tail latency suffers if only one thread affected!



Latency (usecs)

Latency with # threads = # cores + 1
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Same result with # threads = # cores!

Latency vs. QPS (# threads = # cores)
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Pin threads to prevent migrations

10000
7 9000
@ 8000
< 7000
S 6000
2 5000
g 4000
= 3000
& 2000
1000

0

Latency vs. QPS (# threads = # cores)

===TCP
===TCP+Pin

Pin = sched_setaffinity() to
assign threads to specific cores
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Interesting UDP behavior

Latency vs. QPS (# threads = # cores)
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Latency (usecs)
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Interesting UDP behavior

Latency vs. QPS (# threads = # cores + 1)
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Memcached UDP handling

o >

Epoll Set | Epoll Set | | Epoll Set | | Epoll Set

Listen Worker Worker Worker Worker
Thread Thread Thread Thread Thread

[ o

* Dynamically load balanced!

 Poor QPS due to lock contention on UDP socket
— Multiple UDP sockets might reintroduce QoS problem



More Related Work

* Deadline scheduling
— Liu and Layland [JACM’1973], seminal results

— AQuoSA [SPE’08], EDF w/ dynamic reservations,
SCHED DEADLINE

— We should schedule events, not processes!

* Ultra-low latency services
— RAMCloud [OSR’10], Chronos [SOCC’'12]
— User-level networking, bypass OS!
— Must reconcile provisioned vs. nominal QPS



Consolidation related work

 Don’t run interfering jobs together
— Bubble-Up [Mars, MICRO’11]
— Paragon [Delimitrou, ASPLOS’13]
— Don’t address the root cause of QoS problems

 Network QoS: HULL [NSDI'12]

 Hardware interference mitigation
— Vantage [Sanchez, ISCA’11]
— SMT QoS [Herdrich, HotPar’12]
— Reduce amount of interference, don’t eliminate



Partition/Aggregate Workloads

Query: “Funniest movie ever”

Clueless (0.6)

Data Data Data Data

IH

Overall latency dominated by the “tai
Long latency = lost revenue



Feature

Other schedulers do better

Completely Fair POSIX Realtime BVT [Duda’99]
Scheduler + Bandwidth Limit + Grace Period

Reservations

Configurable
preemption

Work
conserving

Achieved QoS with 2 low-latency tasks

Memcached

2

1ms latency-sensitive task
66



Alternative event-handling paradigms

* Sockets shared across event sets
— Be mindful of socket lock contention...
— Thundering herd; don’t put socket in EVERY set
* Event sets shared across threads
— Edge-triggered or EPOLL_ONESHOT to avoid thundering herd
— Not supported by libevent
— Be mindful of event set lock contention...

* Connection stealing/load balancing
— Pisces [Shue et al., OSDI'12]

* Event stealing

— Maintain thread-safe queue of events returned by epoll_wait()
— Steal events from neighbors when idle

* Comparison = future work ©
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